Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch
Author:
Li Liangye, Sheng Shunfeng, Liu Yunfei, Wen Jianpei, Song Changying, Chen Zhipeng, Xu Wangyang, Zhang Zhi, Fan Wei, Chen Chen, Sun QizhenORCID, Shum Perry-Ping
Abstract
AbstractAutomatic and continuous blood pressure monitoring is important for preventing cardiovascular diseases such as hypertension. The evaluation of medication effects and the diagnosis of clinical hypertension can both benefit from continuous monitoring. The current generation of wearable blood pressure monitors frequently encounters limitations with inadequate portability, electrical safety, limited accuracy, and precise position alignment. Here, we present an optical fiber sensor-assisted smartwatch for precise continuous blood pressure monitoring. A fiber adapter and a liquid capsule were used in the building of the blood pressure smartwatch based on an optical fiber sensor. The fiber adapter was used to detect the pulse wave signals, and the liquid capsule was used to expand the sensing area as well as the conformability to the body. The sensor holds a sensitivity of -213µw/kPa, a response time of 5 ms, and high reproducibility with 70,000 cycles. With the assistance of pulse wave signal feature extraction and a machine learning algorithm, the smartwatch can continuously and precisely monitor blood pressure. A wearable smartwatch featuring a signal processing chip, a Bluetooth transmission module, and a specially designed cellphone APP was also created for active health management. The performance in comparison with commercial sphygmomanometer reference measurements shows that the systolic pressure and diastolic pressure errors are -0.35 ± 4.68 mmHg and -2.54 ± 4.07 mmHg, respectively. These values are within the acceptable ranges for Grade A according to the British Hypertension Society (BHS) and the Association for the Advancement of Medical Instrumentation (AAMI). The smartwatch assisted with an optical fiber is expected to offer a practical paradigm in digital health.
Funder
National Science Fund of China for Excellent Young Scholars Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electrical and Electronic Engineering,Engineering (miscellaneous)
Reference49 articles.
1. Ma L-Y, Chen W-W, Gao R-L, Liu L-S, Zhu M-L, Wang Y-J, Wu Z-S, Li H-J, Gu D-F, Yang Y-J. China cardiovascular diseases report 2018: an updated summary. J Geriatr Cardiology. 2020;17:1. 2. Radovanovic CAT, Santos LAd, Carvalho MDdB, Marcon SS. Arterial Hypertension and other risk factors associated with cardiovascular diseases among adults. Revista latino-americana de enfermagem. 2014;22: 547–553. 3. Liu S, Li Y, Zeng X, Wang H, Yin P, Wang L, Liu Y, Liu J, Qi J, Ran S. Burden of cardiovascular diseases in China, 1990–2016: findings from the 2016 global burden of disease study. JAMA Cardiology. 2019;4:342–52. 4. Allender S, Scarborough P, Peto V, Rayner M, Leal J, Luengo-Fernandez R, Gray A. European Heart. Network. 2008;3:11–35. 5. Zhou B, Carrillo-Larco RM, Danaei G, Riley LM, Paciorek CJ, Stevens GA, Gregg EW, Bennett JE, Solomon B, Singleton RK. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|