Author:
Liu Yonglei,Dong Zhen,Zhu Yimeng,Wang Haiyun,Wang Fei,Chen Yahong,Cai Yangjian
Abstract
AbstractOptical encryption strategies utilizing fully coherent light have been widely explored but often face challenges such as speckle noise and beam instabilities. In this work, we introduce a novel protocol for multi-channel optical information encoding and encryption using vectorial spatial coherence engineering of a partially coherent light beam. By characterizing the beam’s spatial coherence structure with a $$2 \times 2$$
2
×
2
coherence matrix, we demonstrate independent control over the three components of the coherence Stokes vector. This allows for three-channel optical information encoding and encryption, with applications in color image representation. Unlike existing methods based on fully coherent light modulations, our approach utilizes a two-point dependent coherence Stokes vector, proving resilient to random noise in experimental scenarios. Our findings provide a robust foundation for higher-dimensional optical encoding and encryption, addressing limitations associated with partially coherent light in complex environments.
Funder
Key Technologies Research and Development Program
National Natural Science Foundation of China
Postdoctoral Science Foundation of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献