Net load forecasting using different aggregation levels

Author:

Beichter Maximilian,Phipps Kaleb,Frysztacki Martha Maria,Mikut Ralf,Hagenmeyer Veit,Ludwig Nicole

Abstract

AbstractIn the electricity grid, constantly balancing the supply and demand is critical for the network’s stability and any expected deviations require balancing efforts. This balancing becomes more challenging in future energy systems characterised by a high proportion of renewable generation due to the increased volatility of these renewables. In order to know when any balancing efforts are required, it is essential to predict the so-called net load, the difference between forecast energy demand and renewable supply. Although various forecasting approaches exist for both the individual components of the net load and the net load itself, it is unclear if it is more beneficial to aggregate several specialised forecasts to obtain the net load or to aggregate the input data to forecast the net load with one approach directly. Therefore, the present paper compares three net load forecasting approaches that exploit different levels of aggregation. We compare an aggregated strategy that directly forecasts the net load, a partially aggregated strategy that forecasts demand and supply separately, and a disaggregated strategy that forecasts demand and supply from each generator separately. We evaluate the forecast performance of all strategies with a simple and a complex forecasting model, both for deterministic and probabilistic forecasts, using one year of data from a simulated realistic future energy system characterised by a high share of renewable energy sources. We find that the partially aggregated strategy performs best, suggesting that a balance between specifically tailored forecasting models and aggregation is advantageous.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Energy Engineering and Power Technology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3