Detecting faults in the cooling systems by monitoring temperature and energy

Author:

Kaushik Keshav,Naik Vinayak

Abstract

AbstractThe cooling systems contribute to 40% of overall building energy consumption. Out of which, 40% is wasted because of faulty parts that cause anomalies in the cooling systems. We propose a three-stage, non-invasive part-level anomaly detection technique to identify anomalies in both cooling systems, a ducted-centralized and a ductless-split. We use COTS sensors to monitor temperature and energy without invading the cooling system. After identifying the anomalies, we find the cause of the anomaly. Based on the anomaly, the solution recommends a fix. If there is a technical fault, our proposed technique informs the technician regarding the faulty part, reducing the cost and time needed to repair it. In the first stage, we propose a domain-inspired time-series statistical technique to identify anomalies in cooling systems. We observe an AUC-ROC score of more than 0.93 in simulation and experimentation. In the second stage, we propose using a rule-based technique to identify the cause of the anomaly. We classify causes of anomalies into three classes. We observe an AUC-ROC score of 1. Based on the anomaly classification, we identify the faulty part of the cooling system in the third stage. We use the Nearest-Neighbour Density-Based Spatial Clustering of Applications with Noise (NN-DBSCAN) algorithm with transfer learning capabilities to train the model only once, where it learns the domain knowledge using the simulated data. The trained model is used in different environmental scenarios with both types of cooling systems. The proposed algorithm shows an accuracy score of 0.82 in simulation deployment and 0.88 in experimentation. In the simulation we used both ducted-centralized and ductless-split cooling systems and in the experimentation we evaluated the solution with ductless-split cooling systems. The overall accuracy of the three-stage technique is 0.82 and 0.86 in simulation and experimentation, respectively. We observe energy savings of up to 68% in simulation and 42% during experimentation, with a reduction of ten days in the cooling system’s downtime and up to 75% in repair cost.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3