Evaluating different machine learning techniques as surrogate for low voltage grids

Author:

Balduin Stephan,Westermann Tom,Puiutta Erika

Abstract

Abstract The transition of the power grid requires new technologies and methodologies, which can only be developed and tested in simulations. Especially larger simulation setups with many levels of detail can become quite slow. Therefore, the number of possible simulation evaluations decreases. One solution to overcome this issue is to use surrogate models, i. e., data-driven approximations of (sub)systems. In a recent work, we built a surrogate model for a low voltage grid using artificial neural networks, which achieved satisfying results. However, there were still open questions regarding the assumptions and simplifications made. In this paper, we present the results of our ongoing research, which answer some of these questions. We compare different machine learning algorithms as surrogate models and exchange the grid topology and size. In a set of experiments, we show that algorithms based on linear regression and artificial neural networks yield the best results independent of the grid topology. Furthermore, adding volatile energy generation and a variable phase angle does not decrease the quality of the surrogate models.

Publisher

Springer Science and Business Media LLC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3