Mechanical properties evaluation of metacarpophalangeal joint prosthesis with new titanium-nickel memory alloy: a cadaver study

Author:

Guo Minzheng,Qi Baochuang,Li Jun,Shi Xiangwen,Ni Haonan,Shi Hongxin,Ren Junxiao,Zhou Xizong,Ye Tao,Yao Ling,Xu Yongqing,Zhang Meichao,Li Chuan

Abstract

Abstract Objective Ni-Ti memory alloys are unusual materials for hard-tissue replacement because of their unique superelasticity, good biocompatibility, high strength, low specific gravity, low magnetism, wear resistance, corrosion resistance and fatigue resistance. The current study aims to evaluate its mechanical properties and provide biomechanical basis for the clinical application of the prosthesis. Methods Ten adult metacarpophalangeal joint specimens were randomly divided into a prosthesis group (n = 5, underwent metacarpophalangeal joint prosthesis) and a control group (n = 5, underwent sham operation). Firstly, the axial compression strength was tested with BOSE material testing machine to evaluate its biomechanical strength. Secondly, these specimens were tested for strain changes using BOSE material testing machine and GOM non-contact optical strain measurement system to evaluate the stress changes. Thirdly, fatigue test was performed between groups. Lastly, the mechanical wear of the metacarpophalangeal joint prosthesis was tested with ETK5510 material testing machine to study its mechanical properties. Results Axial compression stiffness in the prosthesis group was greater than that in the control group in terms of 30 ° and 60 ° flexion positions (P < 0.05). There was no statistically significant difference between two groups with regards to axial compression stiffness and stress change test (P > 0.05). In the fatigue wear test, the mean mass loss in the prosthesis group’s prosthesis was 17.2 mg and 17.619 mm3, respectively. The mean volume wear rate was 0.12%. There was no statistically significant difference in the maximum pull-out force of the metacarpal, phalangeal, and polymer polyethylene pads between the prosthesis group and the control group specimens. Conclusions Ni-Ti memory alloy metacarpophalangeal joint prosthesis conforms to the biomechanical characteristics of metacarpophalangeal joints without implants, and the fatigue strength can fully meet the needs of metacarpophalangeal joint activities after joint replacement.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3