Abstract
Abstract
Background
We examined the effectiveness of a manual therapy consisting of forearm skin rolling, muscle mobilization, and upper extremity traction as a preventive treatment for rats performing an intensive lever-pulling task. We hypothesized that this treatment would reduce task-induced neuromuscular and tendon inflammation, fibrosis, and sensorimotor declines.
Methods
Sprague-Dawley rats performed a reaching and lever pulling task for a food reward, 2 h/day, 3 days/week, for 12 weeks, while simultaneously receiving the manual therapy treatment 3 times per week for 12 weeks to either the task-involved upper extremities (TASK-Tx), or the lower extremities as an active control group (TASK-Ac). Results were compared to similarly treated control rats (C-Tx and C-Ac).
Results
Median nerves and forearm flexor muscles and tendons of TASK-Ac rats showed higher numbers of inflammatory CD68+ and fibrogenic CD206+ macrophages, particularly in epineurium, endomysium and epitendons than TASK-Tx rats. CD68+ and CD206+ macrophages numbers in TASK-Tx rats were comparable to the non-task control groups. TASK-Ac rats had more extraneural fibrosis in median nerves, pro-collagen type I levels and immunoexpression in flexor digitorum muscles, and fibrogenic changes in flexor digitorum epitendons, than TASK-Tx rats (which showed comparable responses as control groups). TASK-Ac rats showed cold temperature, lower reflexive grip strength, and task avoidance, responses not seen in TASK-Tx rats (which showed comparable responses as the control groups).
Conclusions
Manual therapy of forelimbs involved in performing the reaching and grasping task prevented the development of inflammatory and fibrogenic changes in forearm nerves, muscle, and tendons, and sensorimotor declines.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference87 articles.
1. Epstein S, Sparer EH, Tran BN, Ruan QZ, Dennerlein JT, Singhal D, et al. Prevalence of work-related musculoskeletal disorders among surgeons and Interventionalists: a systematic review and meta-analysis. JAMA Surg. 2018;153(2):e174947. https://doi.org/10.1001/jamasurg.2017.4947.
2. Wang PC, Rempel DM, Hurwitz EL, Harrison RJ, Janowitz I, Ritz BR. Self-reported pain and physical signs for musculoskeletal disorders in the upper body region among Los Angeles garment workers. Work. 2009;34(1):79–87. https://doi.org/10.3233/WOR-2009-0904.
3. Panush RS. Occupational and recreational musculoskeletal disorders. In: Firestein GS, Budd RC, Gariel SE, McInnes IB, O’Dell JR, editors. Kelley and Firestein’s textbook of rheumatology. Philadelpia: Elsevier; 2017.
4. NIOSH: National manufacturing agenda - June 2010. 2011. http://www.cdc.gov/niosh/nora/comment/agendas/manuf/. Accessed 23 Oct 2011.
5. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84(2):649–98. https://doi.org/10.1152/physrev.00031.2003.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献