Identification of key eRNAs for intervertebral disc degeneration by integrated multinomial bioinformatics analysis

Author:

Li Yongai,Huang Runzhi,Ye Jianxin,Han Xiaying,Meng Tong,Song Dianwen,Yin Huabin

Abstract

Abstract Background Intervertebral disc degeneration (IVDD) is a common degenerative condition leading to abnormal stress distribution under load, causing intervertebral stenosis, facet joint degeneration, and foraminal stenosis. Very little is known about the molecular mechanism of eRNAs in IVDD. Methods Gene expression profiles of 38 annulus disc samples composed of 27 less degenerated discs (LDs) and 11 more degenerated discs (MDs) were retrieved from the GEO database. Then, differentially expressed enhancer RNAs (DEeRNAs), differentially expressed target genes (DETGs), and differentially expressed transcription factors (DETFs), hallmark of cancer signalling pathways according to GSVA; the types and quantity of immune cells according to CIBERSORT; and immune gene sets according to ssGSEA were analysed to construct an IVDD-related eRNA network. Then, multidimensional validation was performed to explore the interactions among DEeRNAs, DETFs and DEGs in space. Results A total of 53 components, 14 DETGs, 15 DEeRNAs, 3 DETFs, 5 immune cells, 9 hallmarks, and 7 immune gene sets, were selected to construct the regulatory network. After validation by online multidimensional databases, 21 interactive DEeRNA-DEG-DETF axes related to IVDD exacerbation were identified, among which the C1S-CTNNB1-CHD4 axis was the most significant. Conclusion Based upon the results of our study, we theorize that the C1S-CTNNB1-CHD4 axis plays a vital role in IVDD exacerbation. Specifically, C1S recruits CTNNB1 and upregulates the expression of CHD4 in IVDD, and subsequently, CHD4 suppresses glycolysis and activates oxidative phosphorylation, thus generating insoluble collagen fibre deposits and leading to the progression of IVDD. Overall, these DEeRNAs could comprise promising therapeutic targets for IVDD due to their high tissue specificity.

Funder

Shanghai Rising-Star Program

Natural Science Foundation of Shanghai

Excellence Program of Shanghai Municipal Health Commission

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3