Author:
Hu Xin,Lu Minxun,He Xuanhong,Li Longqing,Lin Jingqi,Zhou Yong,Luo Yi,Min Li,Tu Chongqi
Abstract
Abstract
Background
Hip-preserved reconstruction for patients with ultrashort proximal femur segments following extensive femoral diaphyseal tumor resection is a formidable undertaking. A customized intercalary prosthesis with a rhino horn-designed uncemented stem was developed for the reconstruction of these extensive skeletal defects.
Methods
This study was designed to analyze and compare the differences in the biomechanical behavior between the normal femur and the femur with diaphyseal defects reconstructed by an intercalary prosthesis with different stems. The biomechanical behavior under physiological loading conditions is analyzed using the healthy femur as the reference. Five three-dimensional finite element models (healthy, customized intercalary prosthesis with four different stems implemented, respectively) were developed, together with a clinical follow-up of 12 patients who underwent intercalary femoral replacement.
Results
The biomechanical results showed that normal-like stress and displacement distribution patterns were observed in the remaining proximal femur segments after reconstructions with the rhino horn-designed uncemented stems, compared with the straight stem. Stem A showed better biomechanical performance, whereas the fixation system with Stem B was relatively unstable. The clinical results were consistent with the FEA results. After a mean follow-up period of 32.33 ± 9.12 months, osteointegration and satisfactory clinical outcomes were observed in all patients. Aseptic loosening (asymptomatic) occurred in one patient reconstructed by Stem B; there were no other postoperative complications in the remaining 11 patients.
Conclusion
The rhino horn-designed uncemented stem is outstanding in precise shape matching and osseointegration. This novel prosthesis design may be beneficial in decreasing the risk of mechanical failure and aseptic loosening, especially when Stem A is used. Therefore, the customized intercalary prosthesis with this rhino horn-designed uncemented stem might be a reasonable alternative for the reconstruction of SSPF following extensive tumor resection.
Funder
the Fundamental Research Funds for the Central Universities
Chengdu science and technology project
8122 Project, Qingdao Research Institute of Sichuan University
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference35 articles.
1. Smolle MA, Andreou D, Tunn PU, Leithner A. Advances in tumour endoprostheses: a systematic review. Efort Open Reviews. 2019;4(7):445–59.
2. Moon BS, Gilbert NF, Cannon CP, Lin PP, Lewis VO. Distal femur allograft prosthetic composite reconstruction for short proximal femur segments following tumor resection. Adv Orthop. 2013;2013:397456.
3. Zimel MN, Farfalli GL, Zindman AM, Riedel ER, Morris CD, Boland PJ, Healey JH. Revision Distal Femoral Arthroplasty With the Compress((R)) Prosthesis Has a Low Rate of Mechanical Failure at 10 Years. Clin Orthop Relat Res. 2016;474(2):528–36.
4. Burger D, Pumberger M, Fuchs B. An uncemented spreading stem for the fixation in the metaphyseal femur: a preliminary report. Sarcoma. 2016;2016:7132838.
5. Cannon CP, Eckardt JJ, Kabo JM, Ward WG, Kelly CM, Wirganowicz PZ, Asavamongkolkul A, Nieves R, Eilber FR. Custom cross-pin fixation of 32 tumor endoprostheses stems. Clin Orthop Relat Res. 2003;417:285–92.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献