PAN RNA: transcriptional exhaust from a viral engine

Author:

Campbell Mel,Izumiya Yoshihiro

Abstract

AbstractKaposi’s sarcoma-associated herpesvirus (KSHV), also designated human herpesvirus 8 (HHV-8), has been linked to Kaposi’s sarcoma, as well as to primary effusion lymphoma (PEL), and a subset of multicentric Castleman’s disease. KSHV genomes are maintained as episomes within infected cells and the virus exhibits a biphasic life cycle consisting of a life-long latent phase during which only a few viral genes are expressed and no viral progeny are produced and a transient lytic reactivation phase, in which a full repertoire of ~ 80 lytic genes are activated in a temporally regulated manner culminating in the release of new virions. Lytic replication is initiated by a single viral protein, K-Rta (ORF50), which activates more than 80 viral genes from multiple resident viral episomes (i.e., viral chromosomes). One of the major targets of K-Rta is a long non-coding nuclear RNA, PAN RNA (polyadenylated nuclear RNA), a lncRNA that accumulates to exceedingly high levels in the nucleus during viral reactivation. K-Rta directly binds to the PAN RNA promoter and robustly activates PAN RNA expression. Although PAN RNA has been known for over 20 years, its role in viral replication is still incompletely understood. In this perspective, we will briefly review the current understanding of PAN RNA and then describe our current working model of this RNA. The model is based on our observations concerning events that occur during KSHV lytic reactivation including (i) a marked accumulation of RNA Pol II at the PAN promoter, (ii) genomic looping emanating from the PAN locus, (iii) interaction of a second viral lytic protein (ORF57) with K-Rta, PAN RNA and RNA Pol II, (iv) the essential requirement for PAN RNA expression in cis for optimal transcriptional execution needed for the entire lytic program, and (v) ORF57 recruitment of RNA Pol II to the PAN genomic locus. Together our results generate a model in which the PAN locus serves as a hub for sequestration/trapping of the cellular transcriptional machinery proximal to viral episomes. Sequestration at the PAN locus facilitates high levels of viral transcription throughout the viral genome during lytic replication. ORF57 acts as a transcription-dependent transactivator at the PAN locus by binding to both Rta and PAN to locally trap RNA Pol II. The resulting accumulation of high levels of nuclear PAN RNA created by this process is an inducible enhancer-derived (eRNA) by-product that litters the infected cell nucleus.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3