Spectroscopic analysis of mushrooms by surface-enhanced Raman scattering (SERS)

Author:

Puliga Federico,Zuffi Veronica,Zambonelli Alessandra,Francioso Ornella,Sanchez-Cortes Santiago

Abstract

Abstract Background Mushrooms have always been considered an important source of food and biologically active compounds with several medicinal properties. In recent years, different methods were used to study the quality and chemical composition of mushrooms. Among these, Fourier transform infrared (FT-IR) and FT-Raman spectroscopy techniques have been successfully applied to identify different mushroom species. However, the structural biomolecule components existing in the mycelium or in the fruiting bodies may produce strong fluorescence emission that overlaps the Raman radiation, thus avoiding their analyses by Raman. SERS spectroscopy is a powerful technique which uses metal nanoparticles (NPs) to enhance the Raman signal of molecules adsorbed on the NPs surface. In addition, SERS is able to quench the macromolecule florescence. In this work, we have employed silver nanoparticles in order to get mushroom fingerprints based on SERS as quick procedure to analyze and identify different chemical compounds from the fruiting bodies of six edible and/or medicinal mushrooms: Lentinula edodes, Ganoderma lucidum, Pleurotus cornucopiae, Pleurotus ostreatus, Tuber aestivum and Tuber magnatum. Results SERS analyses performed directly on fruiting body fragments produced characteristic spectra for each species. One group of mushrooms (L. edodes, G. lucidum, T. aestivum and T. magnatum) was dominated by the bands of nucleic acids; and the other one (P. cornucopiae and P. ostreatus), by the bands of pigments such as melanins; carotenoids; azafilones; polyketides; and flavonoids located in the cell wall. Additionally, bands corresponding to cell wall polysaccharides, particularly chitosan and 1,3-β D-glucan, were identified in the extracts of P. cornucopiae, P. ostreatus and L. edodes. No signal of cell wall polysaccharides was found in G. lucidum extract. Raman mapping of the analyzed samples was useful in tracking the spatial distribution of the marker bands. Moreover, the principal component analysis (PCA) carried out on the acquired SERS spectra, allows to discriminate the analyzed mushroom species. Conclusions The SERS technique has the ability to generate a strong Raman signal from mushroom fruiting bodies using Ag-NPs deposited directly on intact, untreated mushroom tissues. Using this methodology, commonly applied laboratory time-consuming methods can be avoided or bypassed as well as analysis time can be reduced. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3