Artificial formation of benzene polycarboxylic acids during sample processing of black carbon analysis: the role of organic carbon amount

Author:

Di Rauso Simeone Giuseppe,Maennicke Heike,Bromm Tobias,Glaser Bruno

Abstract

AbstractBlack carbon is also known as pyrogenic carbon formed by partial combustion of organic material under limited oxygen supply. It occurs along a continuum from original organic slightly charred material to highly aromatic combustion residues such as charcoal, graphite, and soot. Black carbon is extensively studied in various environments due to its ubiquity. It is also important for the biochar community because it can specifically trace the stable polycondensed part of biochar. Different methods have been adopted for black carbon determination; among them using benzene polycarboxylic acids (BPCA) as molecular markers for the polycondensed aromatic moieties of charred materials. However, different researchers have shown interferences from organic matter during BPCA analysis. Therefore, the aim of this work was to assess if artificial formation of BPCA occurs in soil samples when the organic carbon load exceeds 5–10 mg. For this purpose, we conducted black carbon analysis of different soil samples with varying TOC contents of up to 20 mg. In addition, organic matter-rich plant materials were used as a black carbon-free control (leaves of Ivy and Beech, leaves/needles of Spruce and needles of Thuja). To exclude the high-pressure digestion as source of artificial black carbon formation, a comparison between the conventional and a microwave-assisted extraction (MAE) oxidation process was included. Our results show that for soil samples, no artificial BPCA formation occurred at least up to 20 mg of total organic carbon. Higher sample weights are unrealistic for BPCA analysis of soils using current methodology. Therefore, our results clearly demonstrate that there is no artificial BPCA formation during properly performed black carbon analysis of soil samples. On the contrary, for some samples, BPCA contents tended to decrease with increasing sample weight, and thus increasing amount of TOC. In contrast, for plant samples, artificial BPCA formation of up to 3 g kg−1 occurred when more plant material equivalent to 10 mg total organic carbon was used. However, there was no amount dependence of artificial BPCA formation. The reason for artificial BPCA formation was not the high-pressure digestion, as microwave-assisted digestion showed comparable results. However, for real-world analysis, this artificial BPCA formation is not relevant because such high soil sample weights cannot be used. Nevertheless, when using organic-rich material such as peat and charred materials, the samples should contain less than 10 mg of total organic carbon. Graphical Abstract

Funder

Martin Luther University Halle-Wittenberg, Germany

Martin-Luther-Universität Halle-Wittenberg

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3