Investigating antiviral activities of iodine-conjugated organic agents against major viruses infecting pepper in Korea

Author:

Choi Hoseong,Jang Suyeon,Jung Minhue,Kwon Sun-Jung,Kim Hee Kyong,Kang Hyoung-Gon,Lee Daehong,Kim Kook-Hyung

Abstract

Abstract Background Plant viruses cause economic losses by reducing the quantity and quality of major crops. This issue is a growing concern due to the expansion of global trade and climate change. In addition, the emergence of new pathogen strains increases the difficulty of controlling viral diseases. Effective management strategies are therefore needed. The control strategy for viral diseases relies primarily on non-chemical and cultural practices, as no commercial viricides are currently available. Some compounds have been identified as effective against certain viruses, but their use in the field is limited due to issues such as concentration, toxicity, and efficacy. Therefore, it is imperative to discover novel antiviral agents that address the existing challenges associated with the identified antiviral candidate compounds. Results In this study, we evaluated iodine-conjugated organic compounds mixed with sialic acid, whey, and blood meal for virus disease management against seven viruses that cause significant yield losses and economic damage to plants. The candidate compounds reduced virus accumulation and symptom development. Treatment with candidate compounds, A4 and A5, reduced viral RNA accumulation to about half that of those in the control group and showed reduced symptoms along with healthier growth. In addition, we performed transcriptome analysis of treatment with two viruses, which suggested that the mechanism of viral RNA replication inhibition might relate to plant defense systems based on phytohormone pathways. Conclusions This study demonstrated that treatments with naturally derived materials, such as iodine, nitrogen, and sialic acid-conjugated organic substances, may directly or indirectly impact the host plant's resistance to various virus infections. Moreover, our findings suggest that these natural candidate materials could be utilized for managing virus diseases in the field. Graphical Abstract

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3