Seed nano-priming using silica nanoparticles: effects in seed germination and physiological properties of Stevia Rebaudiana Bertoni

Author:

Hasanaklou Nasibeh Tavakoli,Mohagheghi Vahid,Hasanaklou Hourieh Tavakoli,Ma’mani Leila,Malekmohammadi Marjan,Moradi Foad,Dalvand Yadollah

Abstract

Abstract Background This study aimed to assess the effects of different concentrations of silicon (Si) nutrient sources, including bulk silicon dioxide (bSiO2) and two types of silica nanoparticles, nSiO2 (I) and nSiO2 (II) at different concentrations of 1, 5, 10, 25, 50, and 100 ppm in the germination process of stevia. The priming experiment was conducted using a completely randomized design with three replicates to ensure the reliability of the results. Results All stevia seedlings subjected to nano-priming significantly improved the germination parameters. The germination percentage increased by 106%, reaching 68% in nano-primed seedlings. Similarly, the germination rate showed a remarkable increase of 128.12% at 7.3 day−1. Additionally, the root, shoot, and seedling dry weight increased by 283%, 168.9%, and 220% and determined 0.092, 0.078, and 0.17 g plant−1, respectively, compared to the control. Furthermore, seed priming with nSiO2 (I) at a concentration of 10 ppm resulted in an increased catalase (CAT) activity (36.15 Umg−1 protein) and peroxidase (POX) activity (approximately 0.057 U.mg−1 protein). Also, the highest sucrose amount was observed in the root (equal to 160.4 μg g−1 DW) and shoot (equal to 247 μg g−1 DW) of seedlings primed with 10 ppm of nSiO2 (I). However, it should be noted that nano-priming at the highest concentration led to oxidative damage indicated by an increase in H2O2 concentration. Conversely, bSiO2 demonstrated a lesser effect on improving germination, seedling growth, antioxidant activities, and biochemical attributes compared to nSiO2 (I), and nSiO2 (II). Conclusions This study established that seed priming with nSiO2 (I) at a concentration of 10 ppm was the most effective in enhancing germination percentage and rate, root/shoot/dry weight, biochemical attributes, and enzyme activities (such as α-amylase, CAT, and POX). The results suggested that seed priming with nSiO2 (I) at the optimal concentration could improve the seed germination by enhancing the antioxidant system, starch metabolism, and ultimately protecting plants from oxidative damage. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3