Earthworms facilitated pepper (Capsicum annuum L.) growth via enhancing the population and function of arbuscular mycorrhizal fungi in a low-density polyethylene-contaminated soil

Author:

Liu Yifan,He Baiping,Xiao Qingqing,Wang Xin,Lin Xiangui,Hu Junli

Abstract

AbstractMicroplastics (MPs) produced by the decomposition of plastics exist persistently, interfering with soil fertility and plant nutrition. Both arbuscular mycorrhizal (AM) fungi and earthworms are beneficial in terrestrial ecosystems, but their interactions under MPs contamination are unclear so far. Here, the influences of inoculating earthworms (Eisenia fetida) on indigenous AM fungi and pepper (Capsicum annuum L.) growth were investigated in a vegetable soil treated with 0.1% low-density polyethylene (LDPE), while the specific interactions of earthworm and AM fungus (Funneliformis caledonium) under LDPE contamination were further resolved in another experiment using sterilized soil. Inoculation of earthworms shifted soil AM fungal community structure, replacing the predominant genus Glomus by Paraglomus, and increased the abundance, diversity (i.e., Shannon) index, and root colonization rate of AM fungi by 108, 34.6 and 45.0%, respectively. Earthworms also significantly decreased soil pH, and significantly increased soil alkaline phosphatase (ALP) activity, shoot biomass and fruit yield of pepper by 394, 82.8 and 188%, respectively. In the sterilized soil, both E. fetida and F. caledonium improved pepper growth, while the latter noticeably increased phosphorus (P) translocation efficiency from root to shoot, and the combination induced the highest soil ALP activity and pepper fruit yield. Furthermore, the significantly interactive effects between earthworm and AM fungus were observed in soil pH and available P concentration, as well as in shoot P concentration and fruit yield of pepper. This study revealed the interaction between earthworms and AM fungi under MPs contamination conditions for the first time, indicating that earthworms could facilitate vegetable growth via enhancing the propagation and P-promoting function of AM fungi in LDPE-contaminated soils. Graphical Abstract

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3