Combined metagenomics and metabolomic analysis of microbial community structure and metabolic function in continuous soybean cropping soils of Songnen Plain, China

Author:

Xu Letian,Jin Shun,Su Yue,Lyu Xiaochen,Yan Shuangshuang,Wang Chang,Cao Liang,Yan Chao,Ma Chunmei

Abstract

AbstractContinuous cropping has a negative effect on soybean yield. In this study, a positioning experiment was conducted starting in 2015, with three treatments: maize–soybean rotation (SMR), 2-year maize, 2-year soybean rotation cropping (SC2), and 8-year soybean continuous cropping (SC8). We determined soybean yields (2015–2022) and analyzed soil microbial communities, functions, and metabolites composition in the 0–20 cm tillage layer using metagenomics technology and GC–MS technology during soybean flowering in 2022. Results indicated that continuous cropping (SC8) significantly reduced soybean yield compared to crop rotation (SMR) during the experimental period, while SC8 showed higher yield than SC2 in 2022. Compared to SMR, SC8 significantly increased soil N content and significantly decreased pH and TP, AP, and AK content. However, the pH and AK contents of SC8 were significantly higher than those of SC2. LeFSe analysis showed that Friedmanniella, Microlunatus, Nitrososphaera, Rubrobacter, Geodermatophilus, Nitriliruptor were enriched in SC8. Gaiella, Sphaerobacter, Methyloceanibacter were enriched in SC2. Sphingomonas, Cryobacterium, Marmoricola, Haliangium, Arthrobacter, Ramlibacter, Rhizobacter, Pseudolabrys, Methylibium, Variovorax were enriched in SMR. And the relative abundance of Cryobacterium, Marmoricola, Haliangium, Arthrobacter, Ramlibacter, Rhizobacter, Methylibium, Variovorax was significantly positively correlated with yield, while the relative abundance of Gaiella and Sphaerobacter was significantly negatively correlated with yield. SC8 significantly increased the abundance of genes in nitrogen metabolism and significantly decreased the abundance of genes related to phosphorus and potassium metabolism compared with SMR. However, the abundance of genes in potassium metabolism was significantly higher in SC8 than in SC2. Metabolomic analysis showed that compared to SMR, SC8 decreased the abundance of carbohydrates, ketones, and lipid. However, the abundance of carbohydrates, ketones, and lipid was significantly higher in SC8 than in SC2. Mantel test showed that soil pH and AK significantly affected soil microbial community, function, and metabolite composition. Correlation analysis showed significant correlation between soil metabolites and microorganisms, metabolic functions. Graphical Abstract

Funder

National Key Research and Development Programme, Construction and Demonstration of Technology model for cultivation of thick fertile surface of white slurry soil

Publisher

Springer Science and Business Media LLC

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3