A novel adaptation of spatial interpolation methods to map health attitudes related to COVID-19

Author:

Behal Raisa,Davis KennethORCID,Doering Jeffrey

Abstract

Abstract Background The COVID-19 pandemic presented substantial challenges to public health stakeholders working to vaccinate populations against the disease, particularly among vaccine hesitant individuals in low- and middle-income countries. Data on the determinants of vaccine hesitancy are scarce, and often available only at the national level. In this paper, our goal is to inform programmatic decision making in support of local vaccine uptake. Our analytical objectives to support this goal are to (1) reliably estimate attitudinal data at the hyperlocal level, and (2) estimate the loss of data heterogeneity among these attitudinal indicators at higher levels of aggregation. With hyperlocal attitudinal data on the determinants of vaccine hesitancy, public health stakeholders can better tailor interventions aimed at increasing uptake sub-nationally, and even down to the individual vaccination site or neighborhood. Methods We estimated attitudinal data on the determinants of vaccine hesitancy as framed by the WHO’s Confidence, Complacency, and Convenience (“3Cs”) Model of Vaccine Hesitancy using a nationally and regionally representative household survey of 4,922 adults aged 18 and above, collected in February 2022. This custom survey was designed to collect information on attitudes towards COVID-19 and concerns about the COVID-19 vaccine. A machine learning (ML) framework was used to spatially interpolate metrics representative of the 3Cs at a one square kilometer (1km2) resolution using approximately 130 spatial covariates from high-resolution satellite imagery, and 24 covariates from the 2018 Nigeria Demographic and Health Survey (DHS). Results Spatial interpolated hyperlocal estimates of the 3Cs captured significant information on attitudes towards COVID-19 and COVID-19 vaccines. The interpolated estimates held increased heterogeneity within each subsequent level of disaggregation, with most variation at the 1km2 level. Conclusions Our findings demonstrate that a) attitudinal data can be successfully estimated at the hyperlocal level, and b) the determinants of COVID-19 vaccine hesitancy have large spatial variance that cannot be captured through national surveys alone. Access to community level attitudes toward vaccine safety and efficacy; vaccination access, time, and financial burden; and COVID-19 beliefs and infection concerns presents novel implications for public health practitioners and policymakers seeking to increase COVID-19 vaccine uptake through more customized community-level interventions.

Funder

Johnson and Johnson

Sabin Vaccine Institute

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3