Proteomic analysis of ceftazidime and meropenem-exposed Pseudomonas aeruginosa ATCC 9027

Author:

Ngo Hong Loan,Huynh Thuc Quyen,Tran Nguyen Bao Vy,Nguyen Ngoc Hoa Binh,Tong Thi Hang,Trinh Thi Truc Ly,Nguyen Van Dung,Das Prem Prakash,Lim Teck Kwang,Lin Qingsong,Nguyen Thi Thu Hoai

Abstract

Abstract Background Pseudomonas aeruginosa is well known for its intrinsic ability to resist a wide range of antibiotics, thus complicates treatment. Thus, understanding the response of the pathogen to antibiotics is important for developing new therapies. In this study, proteomic response of P. aeruginosa to the commonly used anti-pseudomonas antibiotics, ceftazidime (Caz) and meropenem (Mem) was investigated. Methods P. aeruginosa ATCC 9027, an antibiotic-susceptible strain, was exposed to sub-MIC values of antibiotics either Caz or Mem for 14 days to obtain E1 strains and then cultured in antibiotic-free environments for 10 days to obtain E2 strains. Proteomes of the initial and E1, E2 strains were identified and comparatively analyzed using isobaric tags for relative and absolute quantitation (iTRAQ) in cooperation with nano LC–MS/MS. Noted up and down-regulated proteins were confirmed with quantitative reverse transcriptase PCR (qRT-PCR). Results Overall, 1039 and 1041 proteins were identified in Caz and Mem-exposed strains, respectively. Upon antibiotic exposure, there were 7–10% up-regulated (Caz: 71, Mem: 85) and down-regulated (Caz: 106, Mem: 69) proteins (1.5-fold change cut-off). For both Caz and Mem, the DEPs were primarily the ones involved in metabolic process, membrane, virulence, protein synthesis, and antibiotic resistance in which proteins involved in antibiotics resistance tended to be up-regulated while proteins involved in protein synthesis and metabolic process were down-regulated. Noted proteins included beta-lactamase AmpC which was up-regulated and OprD which was down-regulated in both the antibiotic-exposed strains. Besides, biofilm formation related proteins TssC1 and Hcp1 in Caz- exposed strains and the membrane/ periplasmic proteins Azu and PagL in Mem-exposed strains were found significantly down-regulated. qRT-PCR results confirmed the expression change of AmpC, Hcp1 and OprD proteins. Conclusion Exposure of Pseudomonas aeruginosa to sub-MIC values of Caz and Mem resulted in around 10% change in its proteome. Not only proteins with confirmed roles in antibiotic resistance mechanisms changed their expression but also virulence- associated proteins. Both Caz and Mem response involved up-regulation of AmpC and down-regulation of OprD. While TssC1 and Hcp1 were responsible for Caz response, Azu and PagL were more likely involved in Mem response.

Funder

National Foundation for Science and Technology Development

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3