Evaluation of anti-cancer potential of Excoecaria agallocha (L.) leaf extract on human cervical cancer (SiHa) cell line and assessing the underlying mechanism of action

Author:

Sultana TamannaORCID,Mitra Arup KumarORCID,Das SatadalORCID

Abstract

Abstract Background The incidence of cervical cancer is increasing at an alarming rate in many countries and presently, it is the most common form of malignant cancer being reported among women in India. Development of novel approach for cervical cancer therapy, sparing healthy normal cells overcoming the limitations of prevailing therapies is of prime importance. Mangroves constitute a significant repository of medicinally important plants. Thus, in this study, we aimed to determine the anticancer activity of the mangrove Excoecaria agallocha L. leaf extracts on human cervical cancer (SiHa HPV 16+) cell line with subsequent characterization of the bioactive compounds conferring the anticancer activity and studying the probable underlying mechanism of action of the purified plant extract. Results The plant extract was subjected to silica gel column chromatography and the fractions obtained were analyzed for cytotoxic activity against SiHa cells by MTT assay. One out of the three eluted fractions exhibited selective toxicity against SiHa cells with an IC50 value of 15.538 ± 0.577 µg/mL, while it had no cytotoxic effect on normal healthy human peripheral blood mononuclear cells. High-resolution liquid chromatography mass spectroscopy, coupled to electron spray ionization and diode array detection analysis, led to the structure elucidation and identification of a few pharmacologically important compounds, with Bergenin being present in the highest abundance. Fluorescence microscopy results revealed that the plant extract fraction induced LC3 puncta formation, in EGFP- SiHa cells indicating the onset of autophagy, with simultaneous stimulation of mitophagy. The plant extract also inhibited proliferation of the SiHa-smac-mCherry cells by second mitochondria-derived activator of caspase (SMAC)—induced cytochrome c dependent apoptosis, that was further confirmed with Caspase-3 activation by colorimetric assay. The GFP-dgn in SiHa cells was remarkably protected from proteasomal degradation that might upregulate the survivability of the cells significantly. Flow cytometry followed by Western blot analysis further asserted the ability of the plant extract fraction to cause cell cycle arrest of SiHa cells in the G2/M phase by significantly reducing protein expression levels of cyclin B1 and D1, decreasing Cdc2 level and simultaneously increasing p21 and p53 levels. Conclusion It could be inferred that the aqueous extract of E. agallocha successfully decreased the proliferation of SiHa cervical cancer cells through induction of autophagy and apoptosis in a concerted manner, with simultaneous stimulation of mitophagy and G2/M phase cell cycle arrest, hinting at Bergenin being the major compound conferring the anti-cancer activity of the plant extract. Thus, isolation of the identified bioactive compounds from E. agallocha and their subsequent purification for drug development might serve as a novel medicinal approach for the treatment of cervical cancer in conjugation with existing therapeutic methods.

Funder

Department of Science and Technology, Government of West Bengal

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference68 articles.

1. Sarker S, Reeve R, Thompson J, Paul N, Matthiopoulos, (2016) Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem? Sci Rep 6:21234

2. Betoni JE, Mantovani RP, Barbosa LN, DiStasi LC, Fernandes Junior A (2006) Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. MemInst Oswaldo Cruz 101(4):387–390

3. Lewis K, Ausubel FM (2006) Prospects of plant derived antibacterials. Nat Biotechnol 24(12):1504–1507

4. Lee SB, Cha KH, Kim SN, Altantsetseg S, Shatar S, Sarangerel O, Nho CW (2007) The antimicrobial activity of essential oil from Dracocephalumfoetidum against pathogenic microorganisms. J Microbiol 45:53–57

5. Kokpal V, Miles DH, Payne AM, Chittawong V (1990) Chemical constituents and bioactive compounds from mangrove plants. Stud Nat Prod Chem 7:175–199

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3