Abstract
Abstract
Background
Present investigation for research was to develop matrix-type transdermal drug delivery system of flurbiprofen (FBP) with the various ratio of matrix polymers (hydrophilic and hydrophobic), the concentration of plasticizer and natural penetration enhancer by Box–Behnken statistical design to investigate the combined outcome of selected independent variables for effective management of rheumatoid arthritis.
The influence of a binary mixture of polymers, plasticizer and penetration enhancer on physicochemical considerations including thickness, tensile strength, percent elongation, weight variation, percent moisture content, percent moisture uptake, water vapour transmission rate, folding endurance, drug content, in vitro drug dissolution study and then ex vivo drug permeation study was evaluated.
Results
The study demonstrated that the tensile strength of films improved by matrix polymer ratio and to a slighter gradation in the rise of plasticizer and natural penetration enhancer. Ex vivo drug permeation study was accompanied via excised porcine skin as a permeation barrier in Franz diffusion cell. Ex vivo drug permeation study indicated that matrix polymer ratio (HPMC K15M:ERL100) at 3:1 and natural penetration enhancer (d-limonene) at highest concentration 7.5% w/w containing formulation FBPT7 delivered maximum flux and supplementary improved the permeation of drug. The result of the skin irritation test revealed that the developed formulation is free from any type of skin irritation effects like erythema and oedema.
Conclusion
Based on the findings of this research, it can be established that a well-controlled release and very effective skin penetration of the drug was accomplished by the film FBPT7 in the existence of permeation enhancers for prolonged periods.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献