Development, optimization and characterization of flurbiprofen matrix transdermal drug delivery system using Box–Behnken statistical design

Author:

Joshi RamakantORCID,Garud Navneet

Abstract

Abstract Background Present investigation for research was to develop matrix-type transdermal drug delivery system of flurbiprofen (FBP) with the various ratio of matrix polymers (hydrophilic and hydrophobic), the concentration of plasticizer and natural penetration enhancer by Box–Behnken statistical design to investigate the combined outcome of selected independent variables for effective management of rheumatoid arthritis. The influence of a binary mixture of polymers, plasticizer and penetration enhancer on physicochemical considerations including thickness, tensile strength, percent elongation, weight variation, percent moisture content, percent moisture uptake, water vapour transmission rate, folding endurance, drug content, in vitro drug dissolution study and then ex vivo drug permeation study was evaluated. Results The study demonstrated that the tensile strength of films improved by matrix polymer ratio and to a slighter gradation in the rise of plasticizer and natural penetration enhancer. Ex vivo drug permeation study was accompanied via excised porcine skin as a permeation barrier in Franz diffusion cell. Ex vivo drug permeation study indicated that matrix polymer ratio (HPMC K15M:ERL100) at 3:1 and natural penetration enhancer (d-limonene) at highest concentration 7.5% w/w containing formulation FBPT7 delivered maximum flux and supplementary improved the permeation of drug. The result of the skin irritation test revealed that the developed formulation is free from any type of skin irritation effects like erythema and oedema. Conclusion Based on the findings of this research, it can be established that a well-controlled release and very effective skin penetration of the drug was accomplished by the film FBPT7 in the existence of permeation enhancers for prolonged periods.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3