Antiproliferative and apoptotic activities of tomato bioactive metabolite on MDA-MB-435 cell line: in silico molecular modeling and molecular dynamics investigation

Author:

Elkhawas Yasmin A.ORCID,Ewida Menna A.,Ewida Heba A.,Gonaid Mariam,Khalil Noha

Abstract

Abstract Background As an external organ, the skin protects the whole body against hazardous external influences. Ultraviolet (UV) radiation is one of these influences which in high amount can cause DNA damage, and even skin cancer. Hence, it is important to promote skin protection with commercially available remedies, and with a healthy diet. Certain vegetables when applied topically or consumed orally may help minimize the effect of UV radiation. The study's goal is to isolate lycopene from tomatoes and evaluate its influence on cell cycle and viability in melanoma cell lines. The cell cycle was examined using flow cytometry, and apoptotic cells were identified using annexin/propidium iodide (PI) markers. Moreover, a molecular modeling and molecular dynamics (MD) simulation were performed to evaluate the stability and dynamics behavior of the compound. Results The obtained results revealed that lycopene caused apoptosis and stopped the cell cycle in human skin carcinoma MDA-MB-435 cells with an IC50 value of 12.14 ± 3.37 uM. It demonstrated a noteworthy ability to inhibit cell growth and improve apoptosis. The effect was dose dependent leading to suppression of cell cycle progression in the G2/M phase. In silico molecular docking investigation confirmed these findings, where the tested compound showed hydrophobic binding with key amino acids. ADME/TOPKAT study along with the Swiss ADME online tool revealed that lycopene exhibits good drug-like properties. Conclusion According to our results, lycopene may be effective in treating human skin carcinoma.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3