Development and characterization of niosomes loaded mucoadhesive biodegradable ocular inserts for extended release of pilocarpine HCl

Author:

Alotaibi Tamara Ahmad,Iyire Affiong,Assaf Shereen,Dahmash Eman ZmailyORCID

Abstract

Abstract Background Pilocarpine HCl is a non-selective muscarinic receptor agonist that is prescribed for the treatment of glaucoma. The use of pilocarpine conventional eye drops is associated with several side effects, such as loss of visual acuity, and the need for several applications due to rapid drainage away via the nasolacrimal duct, especially for elderly people. Such adverse effects can lead to low patient compliance and poor clinical outcomes. Therefore, the aim of this project was to develop, optimise and characterise a biodegradable pilocarpine HCl ocular insert using niosomes as a drug delivery vehicle. To achieve that, various polymers such as hydroxypropyl methylcellulose (HPMC), polyvinyl alcohol (PVA), and a blend of both were investigated to prepare the ocular inserts using solvent casting technique. The niosomes of pilocarpine HCl were prepared using span-60 and cholesterol by thin film hydration method. The produced noisome-loaded ocular inserts were characterised using various analytical techniques, including Fourier Transform Infrared (FTIR), X-ray Diffractions (XRD), thermal analysis, particle size analysis, weight and content uniformity, surface pH and drug release profile, among others. Results The results indicated that drug-free ocular inserts of the two polymers (HPMC + PVA) were better than single polymer-based ocular inserts (HPMC or PVA alone). The formed niosomes demonstrated good entrapment efficiency of 49.7% ± 7.0, with an average particle size of 325.7 ± 3.5 nm. The FTIR analysis showed no interaction between the compositions of niosomes. Four optimal formulations with various co-polymer ratios and pilocarpine content were further evaluated. Pilocarpine-containing niosomes-loaded ocular inserts provided uniformity in pilocarpine content (89–96%), with 34.8% moisture content and an average pH of 7. The release profile of niosomes-loaded inserts demonstrated an initial burst release within 2 h ranging from 26.54% (T4) to 41.22% (T2), and continuous sustained release for the next 24 h (68.32 ± 5.11% (T4) to 82.11 ± 6.01% (T2)). Conclusions This work successfully optimised biodegradable ocular inserts containing slow-release pilocarpine HCl encapsulated in niosomes for the treatment of glaucoma without dose dumping, resulting in a user-friendly drug delivery system. Graphical abstract

Funder

Isra University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3