Abstract
AbstractBiomedical information mining is increasingly recognized as a promising technique to accelerate drug discovery and development. Especially, integrative approaches which mine data from several (open) data sources have become more attractive with the increasing possibilities to programmatically access data through Application Programming Interfaces (APIs). The use of open data in conjunction with free, platform-independent analytic tools provides the additional advantage of flexibility, re-usability, and transparency. Here, we present a strategy for performing ligand-based in silico drug repurposing with the analytics platform KNIME. We demonstrate the usefulness of the developed workflow on the basis of two different use cases: a rare disease (here: Glucose Transporter Type 1 (GLUT-1) deficiency), and a new disease (here: COVID 19). The workflow includes a targeted download of data through web services, data curation, detection of enriched structural patterns, as well as substructure searches in DrugBank and a recently deposited data set of antiviral drugs provided by Chemical Abstracts Service. Developed workflows, tutorials with detailed step-by-step instructions, and the information gained by the analysis of data for GLUT-1 deficiency syndrome and COVID-19 are made freely available to the scientific community. The provided framework can be reused by researchers for other in silico drug repurposing projects, and it should serve as a valuable teaching resource for conveying integrative data mining strategies.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献