A ligand-based computational drug repurposing pipeline using KNIME and Programmatic Data Access: case studies for rare diseases and COVID-19

Author:

Tuerkova Alzbeta,Zdrazil BarbaraORCID

Abstract

AbstractBiomedical information mining is increasingly recognized as a promising technique to accelerate drug discovery and development. Especially, integrative approaches which mine data from several (open) data sources have become more attractive with the increasing possibilities to programmatically access data through Application Programming Interfaces (APIs). The use of open data in conjunction with free, platform-independent analytic tools provides the additional advantage of flexibility, re-usability, and transparency. Here, we present a strategy for performing ligand-based in silico drug repurposing with the analytics platform KNIME. We demonstrate the usefulness of the developed workflow on the basis of two different use cases: a rare disease (here: Glucose Transporter Type 1 (GLUT-1) deficiency), and a new disease (here: COVID 19). The workflow includes a targeted download of data through web services, data curation, detection of enriched structural patterns, as well as substructure searches in DrugBank and a recently deposited data set of antiviral drugs provided by Chemical Abstracts Service. Developed workflows, tutorials with detailed step-by-step instructions, and the information gained by the analysis of data for GLUT-1 deficiency syndrome and COVID-19 are made freely available to the scientific community. The provided framework can be reused by researchers for other in silico drug repurposing projects, and it should serve as a valuable teaching resource for conveying integrative data mining strategies.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3