Author:
Baneshi Mohammad Mehdi,Rezaei Kalantary Roshanak,Jonidi Jafari Ahmad,Nasseri Simin,Jaafarzadeh Nemat,Esrafili Ali
Abstract
Abstract
The use of plants to remove Poly-aromatic-hydrocarbons (PAHs) from soil (phytoremediation) is emerging as a cost-effective method. Phytoremediation of contaminated soils can be promoted by the use of adding microorganisms with the potential of pollution biodegradation (bioaugmentation). In the present work, the effect of bacterial consortium was studied on the capability of Sorghum and Onobrychis sativa for the phytoremediation of soils contaminated with phenanthrene and pyrene. 1.5 kg of the contaminated soil in the ratio of 100 and 300 mg phenanthrene and/or pyrene per kg of dry soil was then transferred into each pot (nine modes). The removal efficiency of natural, phytoremediation and bioaugmentation, separately and combined, were evaluated. The samples were kept under field conditions, and the remaining concentrations of pyrene and phenanthrene were determined after 120 days. The rhizosphere as well as the microbial population of the soil was also determined. Results indicated that both plants were able to significantly remove pyrene and phenanthrene from the contaminated soil samples. Phytoremediation alone had the removal efficiency of about 63% and 74.5% for pyrene and phenanthrene respectively. In the combined mode, the removal efficiency dramatically increased, leading to pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis sativa and 73.84% and 85.2% for sorghum, respectively. According to the results from the present work, it can be concluded that Onobrychis sativa and sorghum are both efficient in removing pyrene and phenanthrene from contamination and bioaugmentation can significantly enhance the phytoremediation of soils contaminated with pyrene and phenanthrene by 22% and 16% respectively.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology,Environmental Engineering
Reference37 articles.
1. Sheng-wang PAN, Shi-qiang WEI, Xin Y, Sheng-xian CAO: The removal and remediation of phenanthrene and pyrene in soil by mixed cropping of alfalfa and rape. Agri Sci China 2008, 7: 1355–1364. 10.1016/S1671-2927(08)60185-6
2. Zhang J, Yin R, Lin X, Liu W, Chen R: Intractive effect of biosurfactant and microorganism to enhanced phytoremediation for removal of aged polycyclic aromatic hydrocarbons from contaminated soils. J Health Sci 2010, 56: 257–266. 10.1248/jhs.56.257
3. Nasseri S, Kalantary R, Nourieh N, Naddafi K, Mahvi A, Baradaran N: Influence of bioaugmentation in biodegradation of PAHs-contaminated soil in bio-slurry phase reactor. J Environ Health Sci Eng 2010, 7: 199–208.
4. Dehghanifard E, Jonidi Jafari A, Rezaei Kalantary R, Mahvi AH, Faramarzi MA, Esrafili A: Biodegradation of 2, 4-dinitrophenol with laccase immobilized on nano-porous silica beads. J Environ Health Sci Eng 2013, 10: 25. 10.1186/1735-2746-10-25
5. Mahvi AH, Maleki A, Alimohamadi M, Ghasri A: Photo-oxidation of phenol in aqueous solution: toxicity of intermediates. Korean J Chem Eng 2007, 24: 79–82. 10.1007/s11814-007-5013-4
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献