Reuse of shipping materials in the intravitreal bevacizumab supply chain: feasibility, cost, and environmental impact

Author:

Vo Loi V.,Mastrorilli Vanessa,Muto Alfonse J.,Emerson Geoffrey G.

Abstract

Abstract Background Intravitreal injections are the most common ophthalmic procedure worldwide and are also a prime opportunity for waste reduction. This study analyzes the feasibility, environmental impact, and cost of reusing shipping materials for intravitreal injection medications, as compared to wasting coolers and cold packs after single-use. Methods In this prospective pilot study, shipping materials (cardboard boxes, polystyrene foam coolers, and cold packs) from repackaged bevacizumab delivered to our clinic (500 doses per week) were saved and reused over a 10-week study period. The shipping supplies were photographed and inspected for defects at point of care (Twin Cities, MN), and returned via standard ground shipping to the outsourcing facility (Tonawanda, NY). Results Polystyrene foam coolers (n = 3) survived 10 roundtrips between the outsourcing facility and retina clinic (600 mi each way), although wear-and-tear was visible in the form of marks and dents. Cold packs (n = 35) were less durable, lasting 3.1 ± 2.0 roundtrips. Total carbon dioxide equivalent (CO2e) emissions were reduced 43%, by reusing shipping materials (12.88 kgCO2e per 1000 bevacizumab doses), as compared to the standard practice of disposing containers after single-use (22.70 kgCO2e per 1000 bevacizumab doses), and landfill volume was reduced by 89%. Cost savings from reusing containers offset expenses incurred with return shipping and extra handling in the reuse cohort (net savings: $0.52 per 1000 bevacizumab doses). Conclusions Reusing shipping supplies can be cost neutral, with less CO2e emissions and reduced landfill. Robust environmental benefit is possible if retina clinics partner with manufacturers to reuse shipping containers.

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology

Reference14 articles.

1. Eckelman MJ, Sherman J. Environmental impacts of the U.S. Health Care System and Effects on Public Health. PLoS ONE. 2016;11(6):e0157014.

2. Kwakye G, Brat GA, Makary MA. Green surgical practices for health care. Arch Surg. 2011;146(2):131–6.

3. World Health Organization (WHO). Health-Care Waste. 2018. Accessed March 30, 2023. https://www.who.int/news-room/fact-sheets/detail/health-care-waste.

4. Power B, Brady R, Connell P. Analyzing the Carbon Footprint of an Intravitreal Injection. J Ophthalmic Vis Res. 2021;16(3):367–76.

5. .2008; available from https://unfccc.int/sites/default/files/08_unfccc_kp_ref_manual.pdfol6. United Nations Framework Convention on Climate Change. Kyoto Protocol Reference Manual on Accounting of Emissions and Assigned Amount. UNFCCC, Lau PE, Jenkins KS, Layton CJ. Current Evidence for the Prevention of Endophthalmitis in Anti-VEGF Intravitreal Injections. J Ophthalmol. 2018;2018:8567912.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3