SOCS3 inhibits the mesenchymal stromal cell secretory factor SDF-1-mediated improvement of islet function in non-obese diabetic mice

Author:

Sui Mingxing,Li Tuo,Lu Hanlan,Li Yanhua,Huang Juan,Zhang Pei,Wang Shusen,Zeng LiORCID

Abstract

Abstract Background Islet transplantation is used therapeutically in a minority of patients with type 1 diabetes (T1D). However, successful outcomes are hampered by early islet β-cell loss caused by immune rejection and autoimmunity. Recent studies have demonstrated that mesenchymal stromal cells can enhance islet function both in vitro and in vivo by secreting ligands that activate islet G-protein coupled receptors (GPCRs). Stromal cell-derived factor 1 (SDF-1) is an MSC-secreted GPCR ligand, whereas the suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of STAT3-activating cytokines. Here, we determined whether improvement in islet function mediated by exogenous SDF-1 is impaired by SOCS3 in experimental models of T1D. Methods Isolated islets were cultured for 48 h with SDF-1. Cytokine-induced apoptosis was measured immediately. Islets from Socs3−/− mice were pre-cultured with exogenous SDF-1 and transplanted underneath the kidney capsule of C57BL/6 mice with streptozotocin-induced diabetes. Blood glucose levels were monitored for 28 days. AMD3100, an antagonist of the SDF-1 ligand CXCR4, was administered subcutaneously to islet transplanted mice to inhibit CXCR4 before and after transplantation. Results SDF-1 protected islet cells from cytokine-induced apoptosis in vitro. SOCS3-knockout (KO) islets pretreated with SDF-1 were effective in reducing blood glucose in non-obese diabetic mice in vivo. We found that SDF-1 elicits localized immunosuppression in transplanted SOCS3-KO islets. Immunomodulation was observed when SOCS-KO islets were preconditioned with SDF-1. Gene expression and flow cytometric analyses revealed significantly decreased immune cell infiltration, inflammatory cytokines, and concomitant increases in FOXP3+ regulatory T cells, alternatively activated M2 macrophages, and dendritic cell phenotypes. Administration of AMD3100 impaired the SDF-1-mediated improvement in SOCS3-KO islet function and local immune suppression. Conclusion SDF-1 improves the function of islet grafts in autoimmune diabetes through regulation by CXCR4; however, the presence of SOCS3 reverses the protective effect of SDF-1 on islet grafts. These data reveal a molecular pathway that can elicit localized immunosuppression and delay graft destruction in transplanted islets.

Funder

National Key Research and Development Program

Natural Science Foundation for Exploration Project of Shanghai

The Military Medical Science and Technology Project

The 'Deep Blue 123' Military Medical Research Project

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3