Diabetic kidney disease induces transcriptome alterations associated with angiogenesis activity in human mesenchymal stromal cells

Author:

Bian Xiaohui,Conley Sabena M.,Eirin Alfonso,Zimmerman Zuckerman Eric A.,Smith Anastasia L.,Gowan Cody C.,Snow Zachary K.,Jarmi Tambi,Farres Houssam,Erben Young M.,Hakaim Albert G.,Dietz Matthew A.,Zubair Abba C.,Wyles Saranya P.,Wolfram Joy V.,Lerman Lilach O.,Hickson LaTonya J.ORCID

Abstract

Abstract Background Therapeutic interventions that optimize angiogenic activities may reduce rates of end-stage kidney disease, critical limb ischemia, and lower extremity amputations in individuals with diabetic kidney disease (DKD). Infusion of autologous mesenchymal stromal cells (MSC) is a promising novel therapy to rejuvenate vascular integrity. However, DKD-related factors, including hyperglycemia and uremia, might alter MSC angiogenic repair capacity in an autologous treatment approach. Methods To explore the angiogenic activity of MSC in DKD, the transcriptome of adipose tissue-derived MSC obtained from DKD subjects was compared to age-matched controls without diabetes or kidney impairment. Next-generation RNA sequencing (RNA-seq) was performed on MSC (DKD n = 29; Controls n = 9) to identify differentially expressed (DE; adjusted p < 0.05, |log2fold change|> 1) messenger RNA (mRNA) and microRNA (miRNA) involved in angiogenesis (GeneCards). Paracrine-mediated angiogenic repair capacity of MSC conditioned medium (MSCcm) was assessed in vitro using human umbilical vein endothelial cells incubated in high glucose and indoxyl sulfate for a hyperglycemic, uremic state. Results RNA-seq analyses revealed 133 DE mRNAs (77 upregulated and 56 down-regulated) and 208 DE miRNAs (119 up- and 89 down-regulated) in DKD-MSC versus Control-MSC. Interestingly, miRNA let-7a-5p, which regulates angiogenesis and participates in DKD pathogenesis, interacted with 5 angiogenesis-associated mRNAs (transgelin/TAGLN, thrombospondin 1/THBS1, lysyl oxidase-like 4/LOXL4, collagen 4A1/COL4A1 and collagen 8A1/COL8A1). DKD-MSCcm incubation with injured endothelial cells improved tube formation capacity, enhanced migration, reduced adhesion molecules E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 mRNA expression in endothelial cells. Moreover, angiogenic repair effects did not differ between treatment groups (DKD-MSCcm vs. Control-MSCcm). Conclusions MSC from individuals with DKD show angiogenic transcriptome alterations compared to age-matched controls. However, angiogenic repair potential may be preserved, supporting autologous MSC interventions to treat conditions requiring enhanced angiogenic activities such as DKD, diabetic foot ulcers, and critical limb ischemia.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3