Author:
Hsueh Yuan-Yu,Wang Duo-Hsiang,Huang Tzu-Chieh,Chang Ya-Ju,Shao Wei-Chi,Tuan Tai-Lan,Hughes Michael W.,Wu Chia-Ching
Abstract
Abstract
Background
In plastic surgery, skin flap is an important approach to reconstructive wound repairs. The rat dorsal skin flap is a clinically relevant and popular animal model to investigate and evaluate flap survival and necrosis. Nonetheless, flap survival is often unstable with unpredictable outcomes, regardless of previous attempts at design modification.
Methods & Results
In the present study, we report a novel flap chamber that provides stable and reproducible outcomes by separating the dorsal skin flap from its surrounding skin by in situ immobilization. The flap chamber blocks circulation that disturbs flap ischemia from both basal and lateral sides of the flap tissue. Demarcation of skin necrosis is macroscopically evident on the flap and supported by distinct changes in histological architecture under microscopic examination. The utility of the novel skin flap chamber is further proven by applying it to the examination of flap survival in streptozotocin-induced diabetic rats with an increase in skin necrosis. The flap chamber also affords size modifications where a narrower flap chamber increases ischemia and provides manipulable therapeutic windows for studying cell therapies. Accordingly, intradermal injection of endothelial cells 3 days before flap ischemia significantly increases the survival of skin flaps.
Conclusions
The novel flap chamber not only may stabilize the skin flap and provide reproducible outcomes that overcome the shortfalls of the traditional ischemic flap but also may afford size modifications that support research designs and test therapeutic approaches to regenerative repair.
Funder
Ministry of Science and Technology, Taiwan
National Health Research Institute, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Reference26 articles.
1. Patel RS, McCluskey SA, Goldstein DP, Minkovich L, Irish JC, Brown DH, Gullane PJ, Lipa JE, Gilbert RW. Clinicopathologic and therapeutic risk factors for perioperative complications and prolonged hospital stay in free flap reconstruction of the head and neck. Head Neck. 2010;32:1345–53.
2. Suzuki S, Miyachi Y, Niwa Y, Isshiki N. Significance of reactive oxygen species in distal flap necrosis and its salvage with liposomal SOD. Br J Plast Surg. 1989;42:559–64.
3. Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011;2011:969618.
4. McFarlane RM, Deyoung G, Henry RA. The design of a pedicle flap in the rat to study necrosis and its prevention. Plast Reconstr Surg. 1965;35:177–82.
5. Kraemer R, Lorenzen J, Kabbani M, Herold C, Busche M, Vogt PM, Knobloch K. Acute effects of remote ischemic preconditioning on cutaneous microcirculation--a controlled prospective cohort study. BMC Surg. 2011;11:32.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献