Transplantation of human Wharton’s jelly-derived mesenchymal stem cells highly expressing TGFβ receptors in a rabbit model of disc degeneration

Author:

Ahn Jongchan,Park Eun-mi,Kim Byeong Ju,Kim Jin-Soo,Choi Bogyu,Lee Soo-Hong,Han Inbo

Abstract

Abstract Introduction Mesenchymal stem cells (MSCs) are widely considered to hold promise for the treatment of intervertebral disc (IVD) degeneration. However, variation in the therapeutic efficacy of MSCs is a major problem and the derivation of MSCs for use in IVD regeneration has not been optimized. Additionally, no data are available on the efficacy of Wharton’s Jelly-derived MSC (WJ-MSC) transplantation in an animal model of IVD degeneration. Methods This study evaluated the effectiveness of a cross-linked hyaluronic acid (XHA) scaffold loaded with human WJ-MSCs, according to their expression levels of transforming growth factor-β receptor I/activin-like kinase receptor 5 (TβRI/ALK5) and TβRII, for IVD regeneration in a rabbit model. We compared the degree of IVD regeneration between rabbits transplanted with a XHA scaffold loaded with WJ-MSCs highly and lowly expressing TβRI/ALK5 and TβRII (MSC-highTR and MSC-lowTR, respectively) using magnetic resonance imaging (MRI) and histological analysis. Results At 12 weeks after transplantation, T2-weighted MRI analysis showed significant restoration of the disc water content in rabbits treated with a MSC-highTR-loaded XHA scaffold in comparison to rabbits treated with the scaffold alone or a MSC-lowTR-loaded XHA scaffold. In addition, morphological and histological analyses revealed that IVD regeneration was highest in rabbits transplanted with a MSC-highTR-loaded XHA scaffold. Conclusion Taken together, our results suggest that a MSC-highTR-loaded XHA scaffold supports IVD regeneration more effectively than a MSC-lowTR-loaded XHA scaffold. This study supports the potential clinical use of MSC-highTR-loaded XHA scaffolds to halt IVD degeneration or to enhance IVD regeneration.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3