Abstract
Abstract
Background
Hematopoietic stem cell transplantation (HSCT) is the main treatment for acute radiation sickness, especially after fatal radiation. The determination of HSCT for radiation patients is mainly based on radiation dose, hemogram and bone marrow injury severity. This study aims to explore a better biomarker of acute radiation injury from the perspective of systemic immune response.
Methods
C57BL/6J female mice were exposed to total body irradiation (TBI) and partial body irradiation (PBI). Changes in haptoglobin (Hp) level in plasma were shown at different doses and time points after the exposure and treatment with amifostine or bone marrow transplantation. Student’s t-test/two tailed test were used in two groups. To decide the Hp levels as a predictor of the radiation dose in TBI and PBI, multiple linear regression analysis were performed. The ability of biomarkers to identify two groups of different samples was determined by the receiver operating characteristic (ROC) curve. The results were expressed as mean ± standard deviation (SD). Significance was set at P value < 0.05, and P value < 0.01 was set as highly significant. Survival distribution was determined by log-rank test.
Results
In this study, we found that Hp was elevated dose-dependently in plasma in the early post-irradiation period and decreased on the second day, which can be used as a molecular indicator for early dose assessment. Moreover, we detected the second increase of Hp on the 3rd and 5th days after the lethal irradiation at 10 Gy, which was eliminated by amifostine, a radiation protection drug, while protected mice from death. Most importantly, bone marrow transplantation (BMT) on the 3rd and 5th day after 10 Gy radiation improved the 30-days survival rate, and effectively accelerated the regression of secondary increased Hp level.
Conclusions
Our study suggests that Hp can be used not only as an early molecule marker of radiation injury, but also as an important indicator of bone marrow transplantation therapy for radiation injury, bringing new scientific discoveries in the diagnosis and treatment of acute radiation injury from the perspective of systemic immunity.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Reference58 articles.
1. Luckey TD. Nurture with ionizing radiation: a provocative hypothesis. Nutr Cancer. 1999;34:1–11.
2. Akiyama J, Kato S, Tsubokura M, Mori J, Tanimoto T, Abe K, et al. Minimal internal radiation exposure in residents living south of the Fukushima Daiichi Nuclear Power Plant Disaster. PLoS ONE. 2015;10:e0140482.
3. Naoi Y, Fujikawa A, Kyoto Y, Kunishima N, Ono M, Watanabe Y. Internal radiation exposure of Ground Self-Defense Force members involved in the management of the Fukushima Nuclear Power Plant disaster. Am J Disaster Med. 2013;8:87–90.
4. Yoshida K, Hashiguchi K, Taira Y, Matsuda N, Yamashita S, Takamura N. Importance of personal dose equivalent evaluation in Fukushima in overcoming social panic. Radiat Prot Dosimetry. 2012;151:144–6.
5. Voisin P, Barquinero F, Blakely B, Lindholm C, Lloyd D, Luccioni C, et al. Towards a standardization of biological dosimetry by cytogenetics. Cell Mol Biol (Noisy-Le-Grand). 2002;48:501–4.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献