Metabolic switching, growth kinetics and cell yields in the scalable manufacture of stem cell-derived insulin-producing cells

Author:

Iworima Diepiriye G.,Baker Robert K.,Ellis Cara,Sherwood Chris,Zhan Lisa,Rezania Alireza,Piret James M.,Kieffer Timothy J.

Abstract

Abstract Background Diabetes is a disease affecting over 500 million people globally due to insulin insufficiency or insensitivity. For individuals with type 1 diabetes, pancreatic islet transplantation can help regulate their blood glucose levels. However, the scarcity of cadaveric donor islets limits the number of people that could receive this therapy. To address this issue, human pluripotent stem cells offer a potentially unlimited source for generating insulin-producing cells through directed differentiation. Several protocols have been developed to make stem cell-derived insulin-producing cells. However, there is a lack of knowledge regarding the bioprocess parameters associated with these differentiation protocols and how they can be utilized to increase the cell yield. Methods We investigated various bioprocess parameters and quality target product profiles that may influence the differentiation pipeline using a seven-stage protocol in a scalable manner with CellSTACKs and vertical wheel bioreactors (PBS-Minis). Results Cells maintained > 80% viability through all stages of differentiation and appropriately expressed stage-specific markers. During the initial four stages leading up to the development of pancreatic progenitors, there was an increase in cell numbers. Following pancreatic progenitor stage, there was a gradual decrease in the percentage of proliferative cells, as determined by Ki67 positivity, and a significant loss of cells during the period of endocrine differentiation. By minimizing the occurrence of aggregate fusion, we were able to enhance cell yield during the later stages of differentiation. We suggest that glucose utilization and lactate production are cell quality attributes that should be considered during the characterization of insulin-producing cells derived from stem cells. Our findings also revealed a gradual metabolic shift from glycolysis, during the initial four stages of pancreatic progenitor formation, to oxidative phosphorylation later on during endocrine differentiation. Furthermore, the resulting insulin-producing cells exhibited a response to several secretagogues, including high glucose. Conclusion This study demonstrates process parameters such as glucose consumption and lactate production rates that may be used to facilitate the scalable manufacture of stem cell-derived insulin-producing cells.

Funder

Juvenile Diabetes Research Foundation Canada

Stem Cell Network

Natural Science and Engineering Research Council

Canadian Federation of University Women

Canadian Institutes of Health Research

STEMCELL Technologies

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3