MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization

Author:

Zhang Yaqi,Le Xi,Zheng Shuo,Zhang Ke,He Jing,Liu Mengting,Tu Chengshu,Rao Wei,Du Hongyuan,Ouyang Yu,Li Changyong,Wu DongchengORCID

Abstract

Abstract Background Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and a common cause of end-stage renal disease (ESRD). Mesenchymal stem cells (MSCs) possess potent anti-inflammatory and immunomodulatory properties, which render them an attractive therapeutic tool for tissue damage and inflammation. Methods This study was designed to determine the protective effects and underlying mechanisms of human umbilical cord-derived MSCs (UC-MSCs) on streptozotocin-induced DN. Renal function and histological staining were used to evaluate kidney damage. RNA high-throughput sequencing on rat kidney and UCMSC-derived exosomes was used to identify the critical miRNAs. Co-cultivation of macrophage cell lines and UC-MSCs-derived conditional medium were used to assess the involvement of macrophage polarization signaling. Results UC-MSC administration significantly improved renal function, reduced the local and systemic inflammatory cytokine levels, and attenuated inflammatory cell infiltration into the kidney tissue in DN rats. Moreover, UC-MSCs shifted macrophage polarization from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype. Mechanistically, miR-146a-5p was significantly downregulated and negatively correlated with renal injury in DN rats as determined through high-throughput RNA sequencing. Importantly, UC-MSCs-derived miR-146a-5p promoted M2 macrophage polarization by inhibiting tumor necrosis factor receptor-associated factor-6 (TRAF6)/signal transducer and activator of transcription (STAT1) signaling pathway. Furthermore, miR-146a-5p modification in UC-MSCs enhanced the efficacy of anti-inflammation and renal function improvement. Conclusions Collectively, our findings demonstrate that UC-MSCs-derived miR-146a-5p have the potential to restore renal function in DN rats through facilitating M2 macrophage polarization by targeting TRAF6. This would pave the way for the use of miRNA-modified cell therapy for kidney diseases.

Funder

Wuhan Municipal Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3