Modelled and observed mean and seasonal relationships between climate, population density and malaria indicators in Cameroon

Author:

Mbouna Amelie D.ORCID,Tompkins Adrian M.,Lenouo Andre,Asare Ernest O.,Yamba Edmund I.,Tchawoua Clement

Abstract

Abstract Background A major health burden in Cameroon is malaria, a disease that is sensitive to climate, environment and socio-economic conditions, but whose precise relationship with these drivers is still uncertain. An improved understanding of the relationship between the disease and its drivers, and the ability to represent these relationships in dynamic disease models, would allow such models to contribute to health mitigation and adaptation planning. This work collects surveys of malaria parasite ratio and entomological inoculation rate and examines their relationship with temperature, rainfall, population density in Cameroon and uses this analysis to evaluate a climate sensitive mathematical model of malaria transmission. Methods Co-located, climate and population data is compared to the results of 103 surveys of parasite ratio (PR) covering 18,011 people in Cameroon. A limited set of campaigns which collected year-long field-surveys of the entomological inoculation rate (EIR) are examined to determine the seasonality of disease transmission, three of the study locations are close to the Sanaga and Mefou rivers while others are not close to any permanent water feature. Climate-driven simulations of the VECTRI malaria model are evaluated with this analysis. Results The analysis of the model results shows the PR peaking at temperatures of approximately 22 °C to 26 °C, in line with recent work that has suggested a cooler peak temperature relative to the established literature, and at precipitation rates at 7 mm day−1, somewhat higher than earlier estimates. The malaria model is able to reproduce this broad behaviour, although the peak occurs at slightly higher temperatures than observed, while the PR peaks at a much lower rainfall rate of 2 mm day−1. Transmission tends to be high in rural and peri-urban relative to urban centres in both model and observations, although the model is oversensitive to population which could be due to the neglect of population movements, and differences in hydrological conditions, housing quality and access to healthcare. The EIR follows the seasonal rainfall with a lag of 1 to 2 months, and is well reproduced by the model, while in three locations near permanent rivers the annual cycle of malaria transmission is out of phase with rainfall and the model fails. Conclusion Malaria prevalence is maximum at temperatures of 24 to 26 °C in Cameroon and rainfall rates of approximately 4 to 6 mm day−1. The broad relationships are reproduced in a malaria model although prevalence is highest at a lower rainfall maximum of 2 mm day−1. In locations far from water bodies malaria transmission seasonality closely follows that of rainfall with a lag of 1 to 2 months, also reproduced by the model, but in locations close to a seasonal river the seasonality of malaria transmission is reversed due to pooling in the transmission to the dry season, which the model fails to capture.

Funder

Abdus Salam International Centre for Theoretical Physics

OPEC Fund for International Development

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference83 articles.

1. WHO. World malaria report 2014. Geneva: World Health Organization; 2014. http://www.who.int/malaria/publications/world_malaria_report_2014/en/ . Accessed 24 2015.

2. Bandolo FMN. Heavily indebted poor countries (HIPC) initiative in cameroon and the fight to reduce malaria related under-five mortality. Master’s thesis, Høgskolen i Oslo og Akershus. Fakultet for Samfunnsfag; 2012.

3. WHO. Cooperation strategy between WHO and the Republic of Cameroon: 2017–2020. Geneva: World Health Organization; 2017.

4. Chouto S, Wakponou A. Disparités spatio-temporelles et prévalence du paludisme à partir des données formelles: cas de Kousséri (Extrême-Nord Cameroun). Ouvrage honoré du soutien financier de la Faculté des Lettres et Sciences Humaines de l’Université de Maroua, 225.

5. Desiré GN, Marlyse PN, Gwet PH. Modelisation de l’impact de la prevention et de la prise en charge des cas sur la progression du paludisme chez la femme enceinte et les enfants de moins de cinq ans. 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3