Evaluation of human-baited double net trap and human-odour-baited CDC light trap for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia

Author:

Degefa TeshomeORCID,Yewhalaw Delenasaw,Zhou Guofa,Atieli Harrysone,Githeko Andrew K.,Yan Guiyun

Abstract

Abstract Background Surveillance of outdoor host-seeking malaria vectors is crucial to monitor changes in vector biting behaviour and evaluate the impact of vector control interventions. Human landing catch (HLC) has been considered the most reliable and gold standard surveillance method to estimate human-biting rates. However, it is labour-intensive, and its use is facing an increasing ethical concern due to potential risk of exposure to infectious mosquito bites. Thus, alternative methods are required. This study was conducted to evaluate the performance of human-odour-baited CDC light trap (HBLT) and human-baited double net trap (HDNT) for outdoor host-seeking malaria vector surveillance in Kenya and Ethiopia. Methods The sampling efficiency of HBLT and HDNT was compared with CDC light trap and HLC using Latin Square Design in Ahero and Iguhu sites, western Kenya and Bulbul site, southwestern Ethiopia between November 2015 and December 2018. The differences in Anopheles mosquito density among the trapping methods were compared using generalized linear model. Results Overall, 16,963 female Anopheles mosquitoes comprising Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani and Anopheles squamosus were collected. PCR results (n = 552) showed that Anopheles arabiensis was the only member of An. gambiae s.l. in Ahero and Bulbul, while 15.7% An. arabiensis and 84.3% An. gambiae sensu stricto (s.s.) constituted An. gambiae s.l. in Iguhu. In Ahero, HBLT captured 2.23 times as many An. arabiensis and 2.11 times as many An. funestus as CDC light trap. In the same site, HDNT yielded 3.43 times more An. arabiensis and 3.24 times more An. funestus than HBLT. In Iguhu, the density of Anopheles mosquitoes did not vary between the traps (p > 0.05). In Bulbul, HBLT caught 2.19 times as many An. arabiensis as CDC light trap, while HDNT caught 6.53 times as many An. arabiensis as CDC light trap. The mean density of An. arabiensis did not vary between HDNT and HLC (p = 0.098), whereas the HLC yielded significantly higher density of An. arabiensis compared to HBLT and CDC light trap. There was a significant density-independent positive correlation between HDNT and HLC (r = 0.69). Conclusion This study revealed that both HBLT and HDNT caught higher density of malaria vectors than conventional CDC light trap. Moreover, HDNT yielded a similar vector density as HLC, suggesting that it could be an alternative tool to HLC for outdoor host-seeking malaria vector surveillance.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3