Nomogram for the prediction of crescent formation in IgA nephropathy patients: a retrospective study

Author:

Lin Zaoqiang,Feng Liuchang,Zeng Huan,Lin Xuefei,Lin Qizhan,Lu Fuhua,Wang Lixin,Mai Jianling,Fang Pingjun,Liu Xusheng,Tan Qinxiang,Zou Chuan

Abstract

Abstract Background The 2017 Oxford classification of immunoglobulin A nephropathy (IgAN) recently reported that crescents could predict a worse renal outcome. Early prediction of crescent formation can help physicians determine the appropriate intervention, and thus, improve the outcomes. Therefore, we aimed to establish a nomogram model for the prediction of crescent formation in IgA nephropathy patients. Methods We retrospectively analyzed 200 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator(LASSO) regression and multivariate logistic regression was applied to screen for influencing factors of crescent formation in IgAN patients. The performance of the proposed nomogram was evaluated based on Harrell’s concordance index (C-index), calibration plot, and decision curve analysis. Results Multivariate logistic analysis showed that urinary protein ≥ 1 g (OR = 3.129, 95%CI = 1.454–6.732), urinary red blood cell (URBC) counts ≥ 30/ul (OR = 3.190, 95%CI = 1.590–6.402), mALBU ≥ 1500 mg/L(OR = 2.330, 95%CI = 1.008–5.386), eGFR < 60ml/min/1.73m2(OR = 2.295, 95%CI = 1.016–5.187), Serum IgA/C3 ratio ≥ 2.59 (OR = 2.505, 95%CI = 1.241–5.057), were independent risk factors for crescent formation. Incorporating these factors, our model achieved well-fitted calibration curves and a good C-index of 0.776 (95%CI [0.711–0.840]) in predicting crescent formation. Conclusions Our nomogram showed good calibration and was effective in predicting crescent formation risk in IgAN patients.

Funder

the Research Project for Practice Development of National TCM Clinical Research Bases

Publisher

Springer Science and Business Media LLC

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3