Abstract
Abstract
Background
Regional citrate anticoagulation may cause a negative calcium balance, systemic hypocalcemia and parathormone (PTH) activation but randomzed studies are not available. Aim was to determine the effect of citrate dose on calcium (Ca) and magnesium (Mg) balance, PTH and Vitamin D.
Methods
Single center prospective randomized study. Patients, requiring continuous venovenous hemofiltration (CVVH) with citrate, randomized to low dose citrate (2.5 mmol/L) vs. high dose (4.5 mmol/L) for 24 h, targeting post-filter ionized calcium (pfiCa) of 0.325–0.4 mmol/L vs. 0.2–0.275 mmol/L, using the Prismaflex® algorithm with 100% postfilter calcium replacement. Extra physician-ordered Ca and Mg supplementation was performed aiming at systemic iCa > 1.0 mmol/L. Arterial blood, effluent and post-filter aliquots were taken for balance calculations (area under the curve), intact (i), oxidized (ox) and non-oxidized (nox) PTH, 25-hydroxy-Vitamin D (25D) and 1,25-dihydroxy-Vitamin D (1,25D).
Results
35 patients were analyzed, 17 to high, 18 to low citrate. Mean 24-h Ca balance was - 9.72 mmol/d (standard error 1.70) in the high vs − 1.18 mmol/d (se 1.70)) (p = 0.002) in the low citrate group and 24-h Mg-balance was − 25.99 (se 2.10) mmol/d vs. -17.63 (se 2.10) mmol/d (p = 0.008) respectively. Physician-ordered Ca supplementation, higher in the high citrate group, resulted in a positive Ca-balance in both groups. iPTH, oxPTH or noxPTH were not different between groups. Over 24 h, median PTH decreased from 222 (25th–75th percentile 140–384) to 162 (111–265) pg/ml (p = 0.002); oxPTH from 192 (124–353) to 154 pg/ml (87–231), p = 0.002. NoxPTH did not change significantly. Mean 25 D (standard deviation), decreased from 36.5 (11.8) to 33.3 (11.2) nmol/l (p = 0.003), 1,25D rose from 40.9 pg/ml (30.7) to 43.2 (30.7) pg/ml (p = 0.046), without differences between groups.
Conclusions
A higher citrate dose caused a more negative CVVH Ca balance than a lower dose, due to a higher effluent Calcium loss. Physician-ordered Ca supplementation, targeting a systemic iCa > 1.0 mmol/L, higher in the high citrate group, resulted in a positive Ca-balance in both groups. iPTH and oxPTH declined, suggesting decreased oxidative stress, while noxPTH did not change. 25D decreased while 1,25-D rose. Mg balance was negative in both groups, more so in the high citrate group.
Trial registration
ClinicalTrials.gov: NCT02194569. Registered 18 July 2014.
Publisher
Springer Science and Business Media LLC
Reference28 articles.
1. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.
2. van der Voort PHJ, Postma SR, Kingma WP, Boerma EC, de Heide LJM, Bakker AJ. An observational study on the effects of nadroparin-based and citrate-based continuous venovenous hemofiltration on calcium metabolism. Blood Purif. 2007;25:267–73.
3. Raimundo M, Crichton S, Lei K, Sanderson B, Smith J, Brooks J, et al. Maintaining Normal levels of ionized calcium during citrate-based renal replacement therapy is associated with stable parathyroid hormone levels. Nephron Clinical practice. 2013;124:124–31 http://www.amjmed.com/article/S0002-9343(13)00775-4/abstract.
4. Brain M, Parkes S, Fowler P, Robertson I, Brown A. Calcium flux in continuous venovenous haemodiafiltration with heparin and citrate anticoagulation. Critical Care Resuscitation. 2011;13:72–81.
5. Zheng Y, Xu Z, Fan Q, Zhu Q, Ma S, Lu J, et al. Calcium supplementation in CVVH using regional citrate anticoagulation. Hemodialysis international International Symposium on Home Hemodialysis. 2019;23:33–41.