Development of a quadruple PCR-based gene microarray for detection of vaccine and wild-type classical swine fever virus, African swine fever virus and atypical porcine pestivirus

Author:

Xia Ying-ju,Xu Lu,Zhao Jun-jie,Li Yuan-xi,Wu Rui-zhi,Song Xiang-peng,Zhao Qi-zu,Liu Ye-bing,Wang Qin,Zhang Qian-yi

Abstract

Abstract Background Classical swine fever (CSF), African swine fever (ASF), and atypical porcine pestivirus (APPV) are acute, virulent, and contagious viral diseases currently hampering the pig industry in China, which result in mummification or stillbirths in piglets and mortality in pigs. Diagnostic assays for the differentiation of infection and vaccination of CSFV, in addition to the detection of ASFV and APPV, are urgently required for better prevention, control, and elimination of these viral diseases in China. Methods A quadruple PCR-based gene microarray assay was developed in this study to simultaneously detect wild-type and vaccine CSFV strains, ASFV and APPV according to their conserved regions. Forty-two laboratory-confirmed samples, including positive samples of 10 other swine viral diseases, were tested using this assay to confirm its high specificity. Results This assay's limit of detections (LODs) for the wild-type and vaccine CSFV were 6.98 and 6.92 copies/µL. LODs for ASFV and APPV were 2.56 × 10 and 1.80 × 10 copies/µL, respectively. When compared with standard RT-PCR or qPCR for CSFV (GB/T 26875–2018), ASFV (MARR issue No.172), or APPV (CN108611442A) using 219 clinical samples, the coincidence was 100%. The results showed that this assay with high sensitivity could specifically distinguish ASFV, APPV, and CSFV, including CSFV infection and immunization. Conclusion This assay provides a practical, simple, economic, and reliable test for the rapid detection and accurate diagnosis of the three viruses and may have good prospects for application in an epidemiological investigation, prevention, and control and elimination of these three diseases.

Funder

National Natural Science Foundation of China

Non-profit Key Program of Veterinary Drug Industry

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Expression system and purification process for the vaccine production;Advanced Vaccination Technologies for Infectious and Chronic Diseases;2024

2. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever?;Viruses;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3