A macrophage-cell model of HIV latency reveals the unusual importance of the bromodomain axis

Author:

Kisaka Javan K.,Rauch Daniel,Griffith Malachi,Kyei George B.

Abstract

Abstract Background Although macrophages are now recognized as an essential part of the HIV latent reservoir, whether and how viral latency is established and reactivated in these cell types is poorly understood. To understand the fundamental mechanisms of viral latency in macrophages, there is an urgent need to develop latency models amenable to genetic manipulations and screening for appropriate latency-reversing agents (LRAs). Given that differentiated THP-1 cells resemble monocyte-derived macrophages in HIV replication mechanisms, we set out to establish a macrophage cell model for HIV latency using THP-1 cells. Methods We created single-cell clones of THP-1 cells infected with a single copy of the dual-labeled HIVGKO in which a codon switched eGFP (csGFP) is under the control of the HIV-1 5’ LTR promoter, and a monomeric Kusabira orange 2 (mKO2) under the control of cellular elongation factor one alpha promoter (EF1α). Latently infected cells are csGFP, mKO2+, while cells with actively replicating HIV (or reactivated virus) are csGFP+,mKO2+. After sorting for latently infected cells, each of the THP-1 clones with unique integration sites for HIV was differentiated into macrophage-like cells with phorbol 12-myristate 13-acetate (PMA) and treated with established LRAs to stimulate HIV reactivation. Monocyte-derived macrophages (MDMs) harboring single copies of HIVGKO were used to confirm our findings. Results We obtained clones of THP-1 cells with latently infected HIV with unique integration sites. When the differentiated THP-1 or primary MDMs cells were treated with various LRAs, the bromodomain inhibitors JQ1 and I-BET151 were the most potent compounds. Knockdown of BRD4, the target of JQ1, resulted in increased reactivation, thus confirming the pharmacological effect. The DYRK1A inhibitor Harmine and lipopolysaccharide (LPS) also showed significant reactivation across all three MDM donors. Remarkably, LRAs like PMA/ionomycin, bryostatin-1, and histone deacetylase inhibitors known to potently reactivate latent HIV in CD4 + T cells showed little activity in macrophages. Conclusions Our results indicate that this model could be used to screen for appropriate LRAs for macrophages and show that HIV latency and reactivation mechanisms in macrophages may be distinct from those of CD4 + T cells.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3