Application of peripheral blood routine parameters in the diagnosis of influenza and Mycoplasma pneumoniae

Author:

Chen Jingrou,Wang Yang,Hong Mengzhi,Wu Jiahao,Zhang Zongjun,Li Runzhao,Ding Tangdan,Xu Hongxu,Zhang Xiaoli,Chen Peisong

Abstract

Abstract Objectives Influenza and Mycoplasma pneumoniae infections often present concurrent and overlapping symptoms in clinical manifestations, making it crucial to accurately differentiate between the two in clinical practice. Therefore, this study aims to explore the potential of using peripheral blood routine parameters to effectively distinguish between influenza and Mycoplasma pneumoniae infections. Methods This study selected 209 influenza patients (IV group) and 214 Mycoplasma pneumoniae patients (MP group) from September 2023 to January 2024 at Nansha Division, the First Affiliated Hospital of Sun Yat-sen University. We conducted a routine blood-related index test on all research subjects to develop a diagnostic model. For normally distributed parameters, we used the T-test, and for non-normally distributed parameters, we used the Wilcoxon test. Results Based on an area under the curve (AUC) threshold of ≥ 0.7, we selected indices such as Lym# (lymphocyte count), Eos# (eosinophil percentage), Mon% (monocyte percentage), PLT (platelet count), HFC# (high fluorescent cell count), and PLR (platelet to lymphocyte ratio) to construct the model. Based on these indicators, we constructed a diagnostic algorithm named IV@MP using the random forest method. Conclusions The diagnostic algorithm demonstrated excellent diagnostic performance and was validated in a new population, with an AUC of 0.845. In addition, we developed a web tool to facilitate the diagnosis of influenza and Mycoplasma pneumoniae infections. The results of this study provide an effective tool for clinical practice, enabling physicians to accurately diagnose and differentiate between influenza and Mycoplasma pneumoniae infection, thereby offering patients more precise treatment plans.

Funder

Guangdong Natural Science Foundation-General Program

the Development Plan “Biosafety Technology” Key Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3