Single-cell sequencing reveals MYC targeting gene MAD2L1 is associated with prostate cancer bone metastasis tumor dormancy

Author:

Wang Xing,Yu Jiandi,Yan Junfeng,Peng Kun,Zhou Haiyong

Abstract

Abstract Background Among malignant tumors, bone metastasis is frequently associated with prostate cancer which is seen in about 80% of patients. During cancer treatments, some tumor cells switch to a "dormant mode" to help tumor cells avoid attack from the immune system and anti-tumor therapies. In this dormant mode, tumor cells can be resuscitated, causing cancer to reoccur. The generally accepted explanation for this phenomenon is that the tumor cells have spread to the bone marrow before treatment and are dormant in the bone marrow. However, the key mechanism for inducing and maintaining the dormancy of these prostate cancer disseminated tumor cells in the bone marrow is still unclear. Therefore, studying the dormancy mechanism of tumor cells in bone metastasis is of great significance for the treatment and the prevention of recurrence of prostate cancer. Methods We obtained single-cell RNA-seq data of tumors from mouse models of prostate cancer bone metastasis mouse model numbered (GSE147150) from the GEO database, and obtained RNA-seq expression data and clinical information from The Cancer Genome Atlas Program (TCGA) of prostate cancer patients from the USCS Xena database. Screening of differential genes and annotation of GO functions were performed separately. Subsequently, the screened differential genes were compared and analyzed with 50 classic Hallmark signaling pathways, and the prognosis analysis of prostate cancer patients in TCGA data was performed to discover the key genes of the dormant mechanism of tumor cells in bone metastasis, and obtain new biomarkers that can be used to predict the prognosis of patients. Results A total of 378 differentially expressed genes were screened, of which 293 were significantly up-regulated and 85 were significantly down-regulated. Among them, the up-regulated genes were mainly related to the immune response, and the down-regulated genes were mainly related to the cell cycle. Through GSVA (Gene set variation analysis), it is found that there are differences in a total of 3 signal pathways: COMPLEMENT, MYC_TARGETS_V1 and MYC_TARGETS_V2. By comparing and analyzing the significantly down-regulated genes in dormant tumor cells with MYC_TARGETS_V1, MYC_TARGETS_V2, three significantly down-regulated genes were obtained: Ccna2, Mad2L1 and Plk1. Conclusion In summary, our findings indicate that the MYC targeting gene Mad2L1 is potentially related to the dormancy mechanism of prostate cancer. At the same time, Mad2L1, a gene associated with dormant prostate cancer cells, may be used as a biomarker for prognostic survival.

Publisher

Springer Science and Business Media LLC

Subject

Urology,Reproductive Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3