Author:
Liu Jianli,Wei Fenglun,Pan Kejia
Abstract
Abstract
In this paper, we give a Beale-Kato-Majda type criterion of strong solutions to the incompressible ideal MHD equations. Instead of double exponential estimates, we get a single exponential bound on
∥
(
u
,
h
)
∥
H
s
(
s
>
5
2
). It can be applied to a system of an ideal viscoelastic flow.
MSC:35B65, 76W05.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference11 articles.
1. Majda AJ Applied Mathematical Sciences 53. In Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York; 1984.
2. Caflisch RE, Klapper I, Steele G: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 1997, 184: 443-455. 10.1007/s002200050067
3. Beale JT, Kato T, Majda AJ: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 1984, 94: 61-66. 10.1007/BF01212349
4. Chen QL, Miao CX, Zhang ZF: On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch. Ration. Mech. Anal. 2010, 195: 561-578. 10.1007/s00205-008-0213-6
5. Du Y, Liu Y, Yao ZA: Remarks on the blow-up criteria for three-dimensional ideal magnetohydrodynamics equations. J. Math. Phys. 2009., 50: Article ID 023507