Abstract
Abstract
Background
Accurate staging and response assessment are essential for prognosis and to guide treatment in patients with lymphoma. The aim of this study was to compare the diagnostic performance of FDG PET/MRI versus FDG PET/CT in adult patients with newly diagnosed Hodgkin and Non- Hodgkin lymphoma.
Methods
In this single centre study, 50 patients were prospectively recruited. FDG PET/MRI was performed after staging FDG PET/CT using a single injection of 18F-FDG. Patients were invited to complete same-day FDG PET/MRI with FDG PET/CT at interim and end of treatment response assessments. Performance was assessed using PET/CT as the reference standard for disease site identification, staging, response assessment with Deauville score and concordance in metabolic activity.
Results
Staging assessment showed perfect agreement (κ = 1.0, P = 0) between PET/MRI and PET/CT using Ann Arbor staging. There was excellent intermodality correlation with disease site identification at staging (κ = 0.976, P < 0.001) with FDG PET/MRI sensitivity of 96% (95% CI, 94–98%) and specificity of 100% (95% CI, 99–100%). There was good correlation of disease site identification at interim assessment (κ = 0.819, P < 0.001) and excellent correlation at end-of-treatment assessment (κ = 1.0, P < 0.001). Intermodality agreement for Deauville scores was good at interim assessment (κ = 0.808, P < 0.001) and excellent at end-of-treatment assessment (κ = 1.0, P = 0). There was good–excellent concordance in SUV max and mean between modalities across timepoints. Minimum calculated radiation patient effective dose saving was 54% between the two modalities per scan.
Conclusion
With high concordance in disease site identification, staging and response assessment, PET/MR is a potentially viable alternative to PET/CT in lymphoma that minimises radiation exposure.
Funder
Early Career Research Grant, Princess Alexandra Hospital
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Oncology,General Medicine,Radiological and Ultrasound Technology