The absence of AhR in CD4+ T cells in patients with acute graft-versus-host disease may be related to insufficient CTCF expression

Author:

Zeng Cong,Cheng Ting-ting,Ma Xia,Liu Yi,Hua Juan,Chen Xu,Wang Shi-yu,Xu Ya-jing

Abstract

Abstract Background Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Accumulating evidence suggests that imbalanced Treg/Th17 ratio accelerates the progression of aGVHD. The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix transcription factor activated through cognate ligand binding. Current evidence supports that AhR plays a critical regulatory role in the differentiation of Treg and Th17 cells. However, the relationship between AhR and aGVHD remains unclear. Results Our results showed that AhR expression was downregulated significantly in CD4+ T cells from patients with aGVHD compared with the non-aGVHD group. We also discovered that after activating AhR deficient CD4+ T cells, the expression levels of the activation markers-CD40L, CD134 and CD137 and cell proliferation activity were significantly higher than those of AhR-expressing CD4+ T cells. Restoring the expression of AhR in aGVHD CD4+ T cells resulted in significantly increased percentage of Tregs and associated gene transcripts, including Foxp3, IL-10 and CD39. In contrast, Th17 cell amounts and the transcription of related genes, including RORγt, IL-17A and IL-17F, were significantly reduced. We confirmed that CTCF recruited EP300 and TET2 to bind to the AhR promoter region and promoted AhR expression by mediating histone H3K9/K14 hyperacetylation and DNA demethylation in this region. The low expression of CTCF caused histone hypoacetylation and DNA hypermethylation of the AhR promoter, resulting in insufficient expression in aGVHD CD4+ T cells. Conclusions CTCF is an important inducer of AhR transcription. Insufficient expression of CTCF leads to excessive AhR downregulation, resulting in substantial CD4+ T cell activation and Th17/Treg ratio increase, thereby mediating the occurrence of aGVHD.

Funder

National Natural Science Foundation of China

Translational Research Grant of NCRCH

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3