Identification of fetal unmodified and 5-hydroxymethylated CG sites in maternal cell-free DNA for non-invasive prenatal testing

Author:

Gordevičius Juozas,Narmontė Milda,Gibas Povilas,Kvederavičiūtė Kotryna,Tomkutė Vita,Paluoja Priit,Krjutškov Kaarel,Salumets Andres,Kriukienė EditaORCID

Abstract

Abstract Background Massively parallel sequencing of maternal cell-free DNA (cfDNA) is widely used to test fetal genetic abnormalities in non-invasive prenatal testing (NIPT). However, sequencing-based approaches are still of high cost. Building upon previous knowledge that placenta, the main source of fetal circulating DNA, is hypomethylated in comparison to maternal tissue counterparts of cfDNA, we propose that targeting either unmodified or 5-hydroxymethylated CG sites specifically enriches fetal genetic material and reduces numbers of required analytical sequencing reads thereby decreasing cost of a test. Methods We employed uTOPseq and hmTOP-seq approaches which combine covalent derivatization of unmodified or hydroxymethylated CG sites, respectively, with next generation sequencing, or quantitative real-time PCR. Results We detected increased 5-hydroxymethylcytosine (5hmC) levels in fetal chorionic villi (CV) tissue samples as compared with peripheral blood. Using our previously developed uTOP-seq and hmTOP-seq approaches we obtained whole-genome uCG and 5hmCG maps of 10 CV tissue and 38 cfDNA samples in total. Our results indicated that, in contrast to conventional whole genome sequencing, such epigenomic analysis highly specifically enriches fetal DNA fragments from maternal cfDNA. While both our approaches yielded 100% accuracy in detecting Down syndrome in fetuses, hmTOP-seq maintained such accuracy at ultra-low sequencing depths using only one million reads. We identified 2164 and 1589 placenta-specific differentially modified and 5-hydroxymethylated regions, respectively, in chromosome 21, as well as 3490 and 2002 Down syndrome-specific differentially modified and 5-hydroxymethylated regions, respectively, that can be used as biomarkers for identification of Down syndrome or other epigenetic diseases of a fetus. Conclusions uTOP-seq and hmTOP-seq approaches provide a cost-efficient and sensitive epigenetic analysis of fetal abnormalities in maternal cfDNA. The results demonstrated that T21 fetuses contain a perturbed epigenome and also indicated that fetal cfDNA might originate from fetal tissues other than placental chorionic villi. Robust covalent derivatization followed by targeted analysis of fetal DNA by sequencing or qPCR presents an attractive strategy that could help achieve superior sensitivity and specificity in prenatal diagnostics.

Funder

European Social Fund

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Developmental Biology,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3