Estrogen-mediated DNMT1 and DNMT3A recruitment by EZH2 silences miR-570-3p that contributes to papillary thyroid malignancy through DPP4

Author:

Hu Xiarong,Ye Qingyao,Lu HuanQuan,Wu Zhiming,Chen Siyuan,Zheng Ruinian

Abstract

Abstract Background Papillary thyroid carcinoma (PTC) is a common endocrine malignancy. Studies have indicated that estrogen can regulate the expression of miRNAs in numerous malignancies. MiR-570-3p has been shown to have a regulatory function in various cancers. However, studies of the regulatory function of miR-570-3p and a direct link between estrogen (especially estradiol E2) and miR-570-3p in PTC have not been done. Methods Expression of miR-570-3p and its downstream target DPP4 in PTC tissues and cells was predicted using bioinformatics and validated by qRT-PCR and western blot assays. We then performed a series of gain-and-loss experiments to assess the functional significance of miR-570-3p/DPP4 axis in PTC progression in vitro and in vivo. Additionally, the methylation of the miR-570-3p promoter region was examined via bioinformatics analysis and MSP. Finally, the effects of E2 on PTC progression and the correlation between DNMT1/DNMT3A and EZH2 were predicted by bioinformatic tools and proved by luciferase reporter, ChIP, and co-IP assays. Results In PTC tumor tissues and cell lines, there was a lower expression level and a higher methylation level of miR-570-3p compared to normal tissues and cell lines. DPP4 was identified as the downstream target of miR-570-3p. Overexpression of miR-570-3p reduced the proliferative, migratory, and invasive capabilities, and promoted apoptosis, while overexpression of DPP4 reversed these effects in PTC cells. It was also discovered that DNMT1 and DNMT3A increased the CpG methylation level of the miR-570-3p promoter in an EZH2-dependent manner, which led to decreased expression of miR-570-3p. Furthermore, we observed that estrogen (E2) enhanced the methylation of miR-570-3p and suppressed its expression levels, resulting in augmented tumor growth in vivo in PTC. Conclusion Estrogen regulates the EZH2/DNMTs/miR-570-3p/DPP4 signaling pathway to promote PTC progression.

Funder

Guangdong Basic and Applied Basic Research Foundation

Dongguan Science and Technology of Social Development Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3