Author:
Leitão Elsa,Di Persio Sara,Laurentino Sandra,Wöste Marius,Dugas Martin,Kliesch Sabine,Neuhaus Nina,Horsthemke Bernhard
Abstract
Abstract
Background
In the past 15 years, numerous studies have described aberrant DNA methylation of imprinted genes (e.g. MEST and H19) in sperm of oligozoospermic men, but the prevalence and genomic extent of abnormal methylation patterns have remained unknown.
Results
Using deep bisulfite sequencing (DBS), we screened swim-up sperm samples from 40 normozoospermic and 93 patients diagnosed as oligoasthenoteratozoospermic, oligoteratozoospermic or oligozoospermic, which are termed OATs throughout the manuscript, for H19 and MEST methylation. Based on this screening, we defined three patient groups: normal controls (NC), abnormally methylated oligozoospermic (AMO; n = 7) and normally methylated oligozoospermic (NMO; n = 86). Whole-genome bisulfite sequencing (WGBS) of five NC and five AMO samples revealed abnormal methylation levels of all 50 imprinting control regions in each AMO sample. To investigate whether this finding reflected epigenetic germline mosaicism or the presence of residual somatic DNA, we made a genome-wide inventory of soma-germ cell-specific DNA methylation. We found that > 2000 germ cell-specific genes are promoter-methylated in blood and that AMO samples had abnormal methylation levels at these genes, consistent with the presence of somatic cell DNA. The comparison between the five NC and six NMO samples revealed 19 differentially methylated regions (DMRs), none of which could be validated in an independent cohort of 40 men. Previous studies reported a higher incidence of epimutations at single CpG sites in the CTCF-binding region 6 of H19 in infertile patients. DBS analysis of this locus, however, revealed an association between DNA methylation levels and genotype (rs2071094), but not fertility phenotype.
Conclusions
Our results suggest that somatic DNA contamination and genetic variation confound methylation studies in sperm of infertile men. While we cannot exclude the existence of rare patients with slightly abnormal sperm methylation at non-recurrent CpG sites, the prevalence of aberrant methylation in swim-up purified sperm of infertile men has likely been overestimated, which is reassuring for patients undergoing assisted reproduction.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Developmental Biology,Genetics,Molecular Biology
Reference62 articles.
1. Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2014;20(6):840–52.
2. Gosden R, Trasler J, Lucifero D, Faddy M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361(9373):1975–7.
3. Kläver R, Tuttelmann F, Bleiziffer A, Haaf T, Kliesch S, Gromoll J. DNA methylation in spermatozoa as a prospective marker in andrology. Andrology-Us. 2013;1(5):731–40.
4. Marques CJ, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–2.
5. Poplinski A, Tuttelmann F, Kanber D, Horsthemke B, Gromoll J. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl. 2010;33(4):642–9.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献