Author:
Gogoleva Natalia,Chervyatsova Olga,Balkin Alexander,Kuzmina Lyudmila,Shagimardanova Elena,Kiseleva Daria,Gogolev Yuri
Abstract
Abstract
Background
Cave biotopes are characterized by stable low temperatures, high humidity, and scarcity of organic substrates. Despite the harsh oligotrophic conditions, they are often inhabited by rich microbial communities. Abundant fouling with a wide range of morphology and coloration of colonies covers the walls of the Shulgan-Tash cave in the Southern Urals. This cave is also famous for the unique Paleolithic painting discovered in the middle of the last century. We aimed to investigate the diversity, distribution, and potential impact of these biofilms on the cave’s Paleolithic paintings, while exploring how environmental factors influence the microbial communities within the cave.
Results
The cave’s biofilm morphotypes were categorized into three types based on the ultrastructural similarities. Molecular taxonomic analysis identified two main clusters of microbial communities, with Actinobacteria dominating in most of them and a unique “CaveCurd” community with Gammaproteobacteria prevalent in the deepest cave sections. The species composition of these biofilms reflects changes in environmental conditions, such as substrate composition, temperature, humidity, ventilation, and CO2 content. Additionally, it was observed that cave biofilms contribute to biocorrosion on cave wall surfaces.
Conclusions
The Shulgan-Tash cave presents an intriguing example of a stable extreme ecosystem with diverse microbiota. However, the intense dissolution and deposition of carbonates caused by Actinobacteria pose a potential threat to the preservation of the cave’s ancient rock paintings.
Funder
University of Innsbruck and Medical University of Innsbruck
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Applied Microbiology and Biotechnology,Microbiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献