Prenatal diagnosis of Duchenne muscular dystrophy revealed a novel mosaic mutation in Dystrophin gene: a case report

Author:

Wang Yan,Chen Yuhan,Wang San Mei,Liu Xin,Gu Ya Nan,Feng ZhichunORCID

Abstract

Abstracts Background Duchenne muscular dystrophies (DMDs) are X-linked recessive neuromuscular disorders with malfunction or absence of the Dystrophin protein. Precise genetic diagnosis is critical for proper planning of patient care and treatment. In this study, we described a Chinese family with mosaic DMD mutations and discussed the best method for prenatal diagnosis and genetic counseling of X-linked familial disorders. Methods We investigated all variants of the whole dystrophin gene using multiple DNA samples isolated from the affected family and identified two variants of the DMD gene in a sick boy and two female carriers by targeted next generation sequencing (TNGS), Sanger sequencing, and haplotype analysis. Results We identified the hemizygous mutation c.6794delG (p.G2265Efs*6) of DMD in the sick boy, which was inherited from his mother. Unexpectedly, a novel heterozygous mutation c.6796delA (p.I2266Ffs*5) of the same gene, which was considered to be a de novo variant, was detected from his younger sister instead of his mother by Sanger sequencing. However, further NGS analysis of the mother and her amniotic fluid samples revealed that the mother carried a low-level mosaic c.6796delA mutation. Conclusions We reported two different mutations of the DMD gene in two siblings, including the novel mutation c.6796delA (p.I2266Ffs*5) inherited from the asymptomatic mosaic-carrier mother. This finding has enriched the knowledge of the pathogenesis of DMD. If no mutation is detected in obligate carriers, the administration of intricate STR/NGS/Sanger analysis will provide new ideas on the prenatal diagnosis of DMD.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3