Non-active site mutants of HIV-1 protease influence resistance and sensitisation towards protease inhibitors

Author:

Bastys Tomas,Gapsys Vytautas,Walter Hauke,Heger Eva,Doncheva Nadezhda T.,Kaiser Rolf,de Groot Bert L.,Kalinina Olga V.ORCID

Abstract

Abstract Background HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease’s active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts. Results Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations’ effect on $$IC_{50}$$IC50 values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively. Conclusions We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured $$IC_{50}$$IC50 values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease’s active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.

Funder

H2020 European Research Council

Klaus Faber Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology

Reference84 articles.

1. Joint United Nations Programme on HIV/AIDS (UNAIDS): UNAIDS DATA 2017. Geneva; 2017. http://www.unaids.org/sites/default/files/media_asset/20170720_Data_book_2017_en.pdf. Accessed 12 June 2018.

2. Joint United Nations Programme on HIV/AIDS (UNAIDS): right to health. 2017. http://www.unaids.org/sites/default/files/media_asset/RighttoHealthReport_Full_webNov.pdf. Accessed 12 June 2018.

3. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. 2nd ed. Geneva: World Health Organization; 2016.

4. Young TP, Parkin NT, Stawiski E, Pilot-Matias T, Trinh R, Kempf DJ, Norton M. Prevalence, mutation patterns, and effects on protease inhibitor susceptibility of the L76V mutation in HIV-1 protease. Antimicrob Agents Chemother. 2010;54(11):4903–6. https://doi.org/10.1128/aac.00906-10.

5. Wiesmann F, Vachta J, Ehret R, Walter H, Kaiser R, Stürmer M, Tappe A, Däumer M, Berg T, Naeth G, Braun P, Knechten H. The L76V mutation in HIV-1 protease is potentially associated with hypersusceptibility to protease inhibitors atazanavir and saquinavir: is there a clinical advantage? AIDS Res Ther. 2011;8(1):7. https://doi.org/10.1186/1742-6405-8-7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3