Abstract
Abstract
Background
The continued persistence of HIV-1 as a public health concern due to the lack of a cure calls for the development of new tools for studying replication of the virus. Here, we used NanoLuc, a small and extremely bright luciferase protein, to develop an HIV-1 bioluminescent reporter virus that simplifies functional measurement of virus particle production.
Results
The reporter virus encodes a Gag protein containing NanoLuc inserted between the matrix (MA) and capsid (CA) domains of Gag, thereby generating virus particles that package high levels of the NanoLuc reporter. We observe that inserting the NanoLuc protein within HIV-1 Gag has minimal impact on Gag expression and virus particle release. We show that the reporter virus recapitulates inhibition of HIV-1 particle release by Gag mutations, the restriction factor tetherin, and the small-molecule inhibitor amphotericin-B methyl ester.
Conclusion
These results demonstrate that this vector will provide a simple and rapid tool for functional studies of virus particle assembly and release and high-throughput screening for cellular factors and small molecules that promote or inhibit HIV-1 particle production.
Funder
National Cancer Institute
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献